
MIKADO Global Computing Project
IST-2001-32222

System Behaviour and Reasoning in the Presence of Failure
MIKADO Deliverable D2.3.2

Editor : A. FRANCALANZA (U. OF SUSSEX)

Authors : A. FRANCALANZA (U. OF SUSSEX)

Contributors : A. FRANCALANZA, M. HENNESSY (U. OF SUSSEX)
R. DE NICOLA, D. GORLA (U. DI FIRENZE)
R. PUGLIESE (U. DI ROMA LA SAPIENZA)

Classification : Public
Deliverable no. : D2.3.2
Reference : RR/WP2/3
Date : December 2004

c© INRIA, France Telecom R&D, U. of Florence, U. of Sussex, U. of Lisbon

MyThS
IST-2001-32617

Mo delsand TypesforSecurity in
MobileDistributedSystems

Deliverableno: D2.1

Type-baseddeflnitionofaccess
and security policies

Report Version:flrst

Report PreparationD ate:2002.12.31

Classification:Public

Deliverableno:D2.1 Due D ate:Month12 Delivery D ate:Month12

ProjectStart D ate:2002.01.01 ProjectDura tion:36months

ProjectCoordinator:University ofSussex

ProjectPartners: ¶EcoleNormaleSup¶erieure,Paris,Universitµa ‘CaFoscari’,Venezia

Projectfundedby theEuropean Comm unity underthe
‘InformationSociety Technologies’Programme (1998{
2002)

Project funded by the European Community under the
“Information Society Technologies” Programme (1998–
2002)

D2.3.3: System Behaviour and Reasoning
in the Presence of Failure

Adrian Francalanza
adrianf@sussex.ac.uk

January 11, 2005

1 Introduction
It is generally accepted that location transparency is hard to attain over Wide Area
Networks [4] : one of the main reasons why this is hard to attain is partial failure,
which reveals the underlying stucture of the distribution of computation. Over the last
decade, various distributed process calculi have arisen to capture and study behaviour
of distributed programs in the presence of failure [2, 1, 16, 3, 17] . In this report,
we overview the work done in the Mikado project [15]along this line of research. To
facilitate our comparison between work carried out by different authors, we first give
a brief classification of the different aspects of failure in § 2, followed by the work on
distributed calculi in § 3.

2 Systems, Faults, Partial Failure and Fault Detectors
Distributed programs in process calculi are sometimes referred to as systems, consist-
ing of processes distibuted over a network. This network can be represented in various
ways, usually involving notions of locations subject to a location structure; this struc-
ture can denote dependencies among the locations or restrictions for communication
or migration across locations. The simplest structure is flat, where every location is
interconnected with one another; a hierarchical structure is another structure and often
denotes location dependencies such as a location containing other locations; a graph
location structure is perhaps the most general and can be used to describe networks
where not every location is interconnected. In this setting, the behaviour of a system
is dependent on the network representation over which it is running; for instance, if a
network is represented by a graph location structure, two processes located at distinct
locations would only be able to communicate directly with one another, if there is a
(direct) link between the two hosting locations.

A network representation may carry a notion of state, such as the liveness of nodes.
Faults, that is defects in the network, are represented as changes the network state; for
instance a location’s state may change from alive to dead. Faults may affect the be-
haviour of a system, and this change in behaviour is called failure [11]. In a distributed

1

setting, the effect of a fault is often limited to a subset of the system, which is referred
to as partial failure. For example, if a location dies, all the processes at that location
stop executing, a type of failure called fail-stop [18]. Other classes of failure may be
observed in systems, depending on the underlying fault. Failures may be permanent or
transient depending on whether a the faulty component recovers its state or not. A fault
may also affect part of a location, which may lead to byzantine failures at that location
[14].

Apart from failures, faults can also be actively observed in systems through fault
detectors; these detectors are used to trigger fault recovery so as to minimise failure.
The most popular classification of fault detectors [5] is based on the notion of correct-
ness and completness. The simplest and most powerful is the perfect fault detector; this
however turns out to be hard to implement in a Wide Area Network setting, which is
inherently asynchronous and does not allow tight synchronisations between locations
[8]. Nevertheless, perfect fault detection is still considered useful from a theoretical
point of view.

3 Work on Distributed Process Calculi with failures
In the Mikado project, there have been two efforts that have addressed the problem of
prcess calculi behaviour in the presence of failure. We here outline both with respect
to the concepts described in § 2.

3.1 tKlaim: Topological Klaim
tKlaim [7], or topological Klaim, is an extension of linda-like distributed language
called cKlaim [6] where a graph based network representation is introduced and di-
rect interaction across two locations is allowed only if there exists a link between the
two locations.

3.1.1 The Syntax

The top level syntax of the language, that is tKlaim nets, may take the form:

l :: P || (νk)(l :: in(T)@k.Q || k : 〈t〉 || {l ↔ k}) (1)

where location l is a free location hosting two processes, P and in(T)@k.Q, k is a
scoped location, hosting one data element, 〈t〉 and a scope that extends also to the
process in(T)@k.Q located at l. The remaining sub-term in (1), {l ↔ k}, represents the
fact that l and k are bi-directionally connected; this allows in(T)@k.Q to input, directly
from l, the data 〈t〉, located at k.

3.1.2 Failures modelled

A form of fail-stop process/data failure is described in tKlaim through the reduction
rule:

(R-FailN) l :: C −→ l :: 0

2

This failure does not translate to location failure, where typically, every process/data
at a particular dead location is affected. tKlaim does not explicitly represent the state
of its locations, and as a result, (R-FailN) cannot be linked to the underlying state of a
faulty location. Thus, the tKlaim net in (1) can reduce to:

l :: P || (νk)(l :: in(T)@k.Q || . . .) −→ l :: 0 || (νk)(l :: in(T)@k.Q || . . .)

where process P at l fails while the other process at l, in(T)@k.Q, remains unaffected.
On the other hand, the calculus manages to describe well fail-stop link failures

through the reduction rule :

(R-FailC) {l ↔ k} −→ 0

which induces a link fault in the network representation. Thus, the tKlaim net in (1)
can reduce to:

l :: P || (νk)(l :: in(T)@k.Q || k : 〈t〉 || {l ↔ k}) −→

l :: P || (νk)(l :: in(T)@k.Q || k : 〈t〉 || 0)

and as a consequence, a link failure is observed, where the process l :: in(T)@k.Q
cannot input the data 〈t〉 at k, since the bidirectional link does not exist anymore.

tKlaim does not provide any fault detection construct, based on the rationale that in
practice, they are hard to attain in asynchronous networks.

3.1.3 Results Obtained

In [7], the authors present a labelled transition system together with a bisimulation for
tKlaim and prove its soundness with respect to may testing equivalence. The authors
also provide various examples implemented in tKlaim justifying their design choices
such as routing algorithms and the k-agreement algorithm.

3.2 Dπ f : Dπ with Location and Link failure
Dπ f [10, 9], is an extension of Dπ [12, 13] with a network representation and a number
of constructs for inducing and observing faults.

3.2.1 The Syntax

The two tiered syntax of Dπ f has the form:

Π . N

where the behaviour of a Dπ system N is subject to a graph based network represen-
tation Π, denoting the state of existing locations and bi-directional links between these
locations; stated otherwise, the calculus represents both node and link faults and the
respective failure. For instance, the Dπ f term:

Π . l[[go k.P]] | l[[go m.go k.Q]] (2)

3

describes two processes, go k.P and go m.go k.Q, both located at l, and both trying to
reach location k along different routes. This system behaves differently, depending on
the state of the network Π: if locations l, k,m and links l↔k, l↔m,m↔k are all alive,
then both P and Q will eventually reach k; if the link l ↔ k is dead, this yeilds a link
failure, whereat the system level, location k is unreachable from certain locations and
only Q can reach k; if location k is dead, this yeilds to a location failure, where at the
system level, any process at k is halted and k is unreachable from any other location.
Another salient point of the Dπ f syntax is that state information regarding a node is
encode as type information when the location is scoped. For instance, the Dπ f term:

Π . M | (νk : loc[a, {l,m}])(N) (3)

denotes a scoped location k whose scope extends throughout the subsystem N(but not
M). The type associated with it, loc[a, {l,m}], states that it is alive, denoted by the tag
a, and connected to the free locations l and m, denoted by the set {l,m}.

3.2.2 Failured modelled

Dπ f systems are also extended with the constructs kill and break l, which inject per-
manent faults at the network level. These constructs enable contexts to change, in
controlled fashion, the state of the network at runtime. The reduction rules for these
constructs are:

(r-kill)
Π ` l : live

Π . l[[kill]] −→ (Π − l) . l[[0]]

(r-brk)
Π ` l : live, l ↔ k : live

Π . l[[break k]] −→ (Π − l ↔ k) . l[[0]]

The final construct extension to Dπ f is a ping construct that could be used to con-
struct perfect failure detection. The reduction rules for this conditional construct are

(r-ping)
Π ` k : live, l ↔ k : live

Π . l[[ping (k)PdQe]] −→ Π . l[[P]]

(r-nping)
Π 0 k : live, l ↔ k : live

Π . l[[ping (k)PdQe]] −→ Π . l[[Q]]

Despite the fact that such a construct is hard to attain in practice, the power of
the ping construct turn out to be crucial for the completness of the subsequent theory
of Dπ f , since it gives observing contexts the required power to detect changes in the
network representation. Another important aspect of ping is that the failure observed
may not correspond directly to the fault that causes it; at most, ping can only observe
a failure where a node has become completely inaccessible, which can be caused by
iether a node fault or multiple faults to all the links connected to that node.

3.2.3 Results

In [10], the authors give a labelled transition system and a bisimulation that is sound
and complete with respect to a reduction barbed congruence. A novel aspect of the
bismulation is the notion of partial views which handles scope extruded location names
that are inccessible to the observer: a scope extruded location is inaccessible when

4

iether it is dead or there does not exist a path of free locations that lead to that location.
In such cases, the observer is prohibited from observing the state of an scope extruded
inaccessible location in an labelled transition system term. Fault tolerance in Dπ f

is studied in [9], where a formal definition of faut tolerance is given together with
bisimulation-based tractable techniques for verifying fault tolerance.

4 Conclusions
This report overviewed the work done in the Mikado project in the field of process
calculi behaviour in the presence of failures. We first categorised the different aspect
of failure, from faults to fault tolerance, which facilitated the subsequent presentation
of two calculi dealing with failure, tKlaim and Dπ f .

References
[1] Roberto M. Amadio. An asynchronous model of locality, failure, and process

mobility. In D. Garlan and D. Le Métayer, editors, Proceedings of the 2nd
International Conference on Coordination Languages and Models (COORDI-
NATION’97), volume 1282, pages 374–391, Berlin, Germany, 1997. Springer-
Verlag.

[2] Roberto M. Amadio and Sanjiva Prasad. Localities and failures. FSTTCS: Foun-
dations of Software Technology and Theoretical Computer Science, 14, 1994.

[3] Martin Berger. Basic theory of reduction congruence for two timed asynchronous
π-calculi. In Proc. CONCUR’04, 2004.

[4] Luca Cardelli. Mobile ambient synchronisation. Technical Report 1997-013,
Digital SRC, 1997.

[5] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):225–267, March 1996.

[6] R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for
global computing. Technical Report 07/2004, Dip. di Informatica, Univ. di Roma
“La Sapienza”, 2004.

[7] Rocco De Nicola, Daniele Gorla, and Rosario Pugliese. Global computing in a
dynamic network of tuple spaces. Draft Copy.

[8] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. ”impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2):374–
382, April 1985.

[9] Adrian Francalanza and Matthew Hennessy. Failure and fault tollerance in a
distributed pi-calculus. Draft Copy (Nov 2004).

5

[10] Adrian Francalanza and Matthew Hennessy. A theory of system behaviour in the
presence of node and link failures. Draft Copy (Oct 2004).

[11] Felix C. Gartner. Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys, 31(1):1–26, March 1999.

[12] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural
theory of access and mobility control in distributed systems. Theoretical Com-
puter Science, 322:615–669, 2004.

[13] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for pro-
cesses in the presence of subtyping. Mathematical Structures in Computer Sci-
ence, 14:651–684, 2004.

[14] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[15] Mikado: GC Project, IST-2001-32222. http://mikado.di.fc.ul.pt.

[16] Nestmann, Fuzzati, and Merro. Modeling consensus in a process calculus.
In CONCUR: 14th International Conference on Concurrency Theory. LNCS,
Springer-Verlag, 2003.

[17] James Riely and Matthew Hennessy. Distributed processes and location failures.
Theoretical Computer Science, 226:693–735, 2001.

[18] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach
to designing fault-tolerant computing systems. Computer Systems, 1(3):222–238,
1983.

6

Global Computing in a Dynamic Network
of Tuple Spaces

Rocco De Nicola1 Daniele Gorla1,2 Rosario Pugliese1

1Dipartimento di Sistemi e Informatica, Universit‘a di Firenze
2Dipartimento di Informatica, Universit‘a di Roma �La Sapienza�

Abstract. We present a calculus inspired by K whose main features are: ex-
plicit process distribution and node interconnections, remote operations, process
mobility and asynchronous communication through distributed tuple spaces. We
Þrst present a basic setting where connections are reliable and immutable; then,
we enrich the basic framework with two more advanced features for global com-
puting, i.e. failures and dynamically evolving connections. In each setting, we use
our formalisms to specify some non-trivial global computing applications; more-
over, we exploit the semantic theory based on an observational equivalence to
equationally establish properties of the proposed case-studies.

1 Introduction

Programming computational infrastructures available globally for o�ering uniform ser-
vices has become one of the main issues in Computer Science. The challenges come
from the necessity of dealing at the same time with issues like communication, co-
operation, mobility, resource usage, security, privacy, failures, etc. in a setting where
demands and guarantees can be very di�erent for the many di�erent components. A
key issue is the deÞnition of innovative theories, computational paradigms, linguistic
mechanisms and implementation techniques for the design, realization, deployment and
management of global computational environments and their application.

On the linguistic side, we believe that a language for global computing should be
equipped with primitives that support network awareness (i.e. locations can be explic-
itly referenced and operations can be remotely invoked), disconnected operations (i.e.
code can be moved from one location to the other and remotely executed), ßexible
communication mechanisms (like distributed repositories [9, 6, 13] storing content ad-
dressable data), and remote operations (like asynchronous remote communications).
On the foundational side, the demand is on the development of tools and techniques to
build safer and trustworthy global systems, to analyze their behaviour, and to demon-
strate their conformance to given speciÞcations. Clearly, such semantic theories should
reßect all the above listed distinctive features of global systems.

In [11] we have developed the semantic theory of a model, called K, that takes
its origin from two formalisms with opposite objectives. On one hand, we have the pro-
gramming language X-K [3], a full ßedged programming language for global com-
puters based on K [10]; on the other hand, we have the π-calculus [17, 19], the gen-
erally recognized minimal common denominator of calculi for mobility. Thus, K
can be thought of as a variant of the π-calculus with process distribution and mobility,
remote operations and asynchronous communication through distributed repositories.

Moreover, it is equipped with semantic theories that can be used as means to state and
prove properties of programs written in X-K.

In this paper, we extend K with new primitives to model the interconnection
structure underlying a net; the resulting formalism is called K (topological K)
and its main feature is that only directly connected nodes can directly interact. This
choice reflects a concrete feature of global computers: only physically connected ma-
chines can exchange information. Sophisticated routing algorithms are then needed to
enable remote operations between nodes that are not directly connected; however, this
aspect is invisible to a user because it is transparently supported by the underlying net-
work architecture.

To softly introduce the reader to our language, we start in Section 2 by presenting
a very basic model where inter-node connections are explicitly programmable but fixed
at the outset. This scenario is very close to LANs: indeed, physical connections are
reliable and immutable (or change very rarely). Section 3 presents a possible use of the
language to program communications between not adjacent machines. In particular, we
present a routing messenger agent and prove soundness of its behaviour by exploiting
may testing [12], an intuitive notion of observational equivalence.

We then present two variations of this basic formalism. In Section 4, we enrich the
language with different forms of failures, another key feature of global computers. We
start with a scenario where only nodes and node components (i.e., data or processes)
can fail and use it to establish soundness of a distributed fault-tolerant protocol, the ‘k-
set agreement’ [8]; then, we briefly present a way to also encompass link failures. The
second variation of the basic framework is in Section 5, where links can be dynamically
changed by processes. The use of the language with both link failures and dynamic
connections is exemplified by programming two routing scenarios and to establish their
soundness.

Section 6 concludes the paper with a discussion on related work. More technical
material is in Appendix A, where we give a sound (bisimulation-based) proof technique
for may testing that can be used for proving properties of the considered examples.
Appendixes B and C contain some of the proofs relative to the examples that have been
removed from the body of the paper to save space.

2 The Language

2.1 Syntax

The syntax of K, given in Table 1, is parameterized with respect to the following
syntactic sets, which we assume to be countable and pairwise disjoint: L, of localities,
ranged over by l;U, of locality variables, ranged over by u;V, of basic values, ranged
over by V;Z, of basic variables, ranged over by x;X, of process variables, ranged over
by X. We use � to range over L�U.

The exact syntax of expressions, e, is deliberately not specified; we just assume that
expressions contain, at least, basic values and variables. Localities, l, are the addresses
(i.e. network references) of nodes. Tuples, t, are sequences of expressions, localities or
locality variables. Templates, T , are used to select tuples: in particular, ! x and ! u, that
we call formal Þelds, are used to bind variables to values.

N: C:
N ::= 0

��� l :: C
��� {l1 ↔ l2}

��� (�l)N
��� N1‖N2 C ::= P

��� 〈t〉
��� C1|C2

P: T:
P ::= nil

��� a.P
��� P1|P2

��� X
��� rec X.P t ::= e

��� �
��� t1, t2

A:
a ::= in(T)@�

��� read(T)@�
��� out(t)@�

��� eval(P)@�
��� new(l)

T: E:
T ::= e

��� ! x
��� �

��� ! u
��� T1,T2 e ::= V

��� x
��� . . .

Table 1. K Syntax

Processes, ranged over by P,Q,R, . . ., are the K active computational units and
may be executed concurrently either at the same locality or at di�erent localities. They
are built up from the terminated process nil and from the basic actions by using pre-
Þxing, parallel composition and recursion. Actions permit removing/accessing/adding
tuples from/to tuple spaces, activating new threads of execution and creating new nodes.
Action new is not indexed with an address because it always acts locally; all the other
actions explicitly indicate the (possibly remote) locality where they will take e�ect.

Nets, ranged over by N,M, . . ., are Þnite collections of nodes and inter-node con-
nections. A node is a pair l :: C, where locality l is the address of the node and C
is the (parallel) component located at l. Components, ranged over by C,D, . . ., can
be either processes or data, denoted by 〈t〉. Connections, or links, are pairs of node
addresses {l1 ↔ l2} stating that the nodes with address l1 and l2 are directly linked
via a physical medium. Connections are bidirectional and can be duplicated, since the
same two nodes could be connected by using di�erent physical media; hence the net
N ‖ {l1 ↔ l2} ‖ {l1 ↔ l2} is allowed. In the net (�l)N, the scope of the name l is private
to N; the intended e�ect is that if one considers the net N1 ‖ (�l)N2 then locality l of N2

cannot be immediately referred to from within N 1.
Names (i.e. localities and variables) occurring in K processes and nets can be

bound. More precisely, preÞxes in(T)@�.P and read(T)@�.P bind T ’s formal Þelds
in P; preÞx new(l).P binds l in P, and, similarly, net restriction (�l)N binds l in N;
Þnally, rec X.P binds X in P. A name that is not bound is called free. The sets fn(·) and
bn(·) (respectively, of free and bound names of a term) are deÞned accordingly. The
set n(·) of names of a term is the union of its sets of free and bound names. As usual,
we say that two terms are alpha-equivalent if one can be obtained from the other by
renaming bound names. In the sequel, we shall work with terms whose bound names are
all distinct and di�erent from the free ones. Moreover, as usual, we shall only consider
closed terms, i.e. processes and nets without free variables.

Notation 1. We write A � W to mean that A is of the form W; this notation is used
to assign a symbolic name A to the term W. We shall use notation �· to denote sets
of objects (e.g. �l is a set of names). We shall sometimes write in()@l, out()@l and 〈〉
to mean that the argument of the actions or the datum are irrelevant. Finally, we omit

match(l; l) = ε match(V; V) = ε

match(!u; l) = [l/u] match(!x; V) = [V/x]

match(T1; t1) = σ1 match(T2; t2) = σ2

match(T1,T2; t1, t2) = σ1 ◦ σ2

Table 2. Pattern Matching Function

trailing occurrences of process nil and write Π j∈J Wj for the parallel composition (both
‘|’ and ‘‖’) of terms (components or nets, resp.) W j.

2.2 Operational Semantics

K operational semantics is given in terms of a structural congruence and a reduc-
tion relation. The structural congruence, ≡, identifies nets which intuitively represent
the same net. It is inspired to π-calculus’s structural congruence (see, e.g., [19]) and
includes laws stating that ‘‖’ is commutative, associative and has 0 as identity element,
laws equating alpha-equivalent nets, laws regulating scope extensions and commutativ-
ity of restrictions, and laws allowing to freely fold/unfold recursive processes. More-
over, the following laws are peculiar to our setting:

(A) (C)
l :: C ≡ l :: C|nil l :: C1|C2 ≡ l :: C1 ‖ l :: C2

(BD) (LN)
{l1 ↔ l2} ≡ {l2 ↔ l1} {l1 ↔ l2} ≡ {l1 ↔ l2} ‖ l1 :: nil

(S) (RN)

l :: nil ≡ {l↔ l} N ≡ (ν̃l)(N′ ‖ l′ :: P) l ∈ fn(P)

(νl)N ≡ (νl)(N ‖ {l↔ l′})

Law (A) states that nil is the identity for ‘|’, while law (C) turns a parallel be-
tween co-located components into a parallel between nodes (thus, it is also used to
achieve commutativity and associativity of ‘|’). Law (BD) states that links are bidi-
rectional, law (S) states that nodes are self-connected and law (LN) states that,
if there exists a link {l1 ↔ l2}, then nodes l1 and l2 do exist. Finally, law (RN) says
that any restricted name can be used as the address of a node, always available to the
processes knowing that name. Indeed, we consider restricted names as private network
addresses, whose corresponding nodes can be activated when needed, and successively
deactivated, by the owners of the resource (i.e. the nodes knowing its name).

The reduction relation is given in Table 3 and relies on two auxiliary functions:
E[[]] and match(;). The tuple/template evaluation function, E[[]], evaluates com-
ponentwise the expressions occurring within the tuple/template ; its definition is sim-
ple and, thus, omitted. The pattern matching function, match(;), verifies the compli-
ance of a tuple w.r.t. a template and associates values to variables bound in the template.

(R-O)
E[[t]] = t′

l :: out(t)@l′.P ‖ {l↔ l′}
−→ l :: P ‖ {l↔ l′} ‖ l′ :: 〈t′〉

(R-E)
l :: eval(P2)@l′.P1 ‖ {l↔ l′}
−→ l :: P1 ‖ {l↔ l′} ‖ l′ :: P2

(R-I)
match(E[[T]]; t) = σ

l :: in(T)@l′.P ‖ {l↔ l′} ‖ l′ :: 〈t〉
−→ l :: Pσ ‖ {l↔ l′}

(R-R)
match(E[[T]]; t) = σ

l :: read(T)@l′.P ‖ {l↔ l′} ‖ l′ :: 〈t〉
−→ l :: Pσ ‖ {l↔ l′} ‖ l′ :: 〈t〉

(R-N) l :: new(l′).P
−→ (νl′)(l :: P ‖ l′ :: nil)

(R-P)
N1
−→ N′1

N1 ‖ N2
−→ N′1 ‖ N2

(R-R)
N
−→ N′

(νl)N
−→ (νl)N ′

(R-S)
N ≡ M M
−→ M′ M′ ≡ N′

N
−→ N′

Table 3. K Reduction Relation

Intuitively, a tuple matches a template if they have the same number of fields, and cor-
responding fields match. Formally, function match is defined in Table 2, where we let
‘ε’ to be the empty substitution and ‘◦’ to denote substitutions composition. Here, a
substitution σ is a mapping of localities and basic values for variables; Pσ denotes the
(capture avoiding) application of σ to P.

The intuition beyond the operational rules of K now follows. Rule (R-O)
evaluates the expressions within the argument tuple and sends the resulting tuple to the
target node. However, this is possible only if the source and the target nodes are directly
connected. Rule (R-E) is similar: a process can be spawned at l ′ by a process running
at l only if l and l′ are directly connected. Rules (R-I) and (R-R) require existence
of a matching datum in the target node and a connection between the source and the
target node. The tuple is then used to replace the free occurrences of the variables bound
by the template in the continuation of the process performing the actions. With action
in the matched datum is consumed while with action read it is not. Rule (R-N)
says that execution of action new(l′) simply adds a restriction over l′ to the net; from
then on, a new node with locality l ′ and its links with other nodes of the net can be
allocated/deallocated by using law (RN). Rules (R-P), (R-R) and (R-S)
are standard.

K adopts a L-like [16] communication mechanism: data are anonymous
and associatively accessed via pattern matching, and communication is asynchronous.

Indeed, even if there exist prefixes for placing data to (possibly remote) nodes, no syn-
chronization takes place between (sending and receiving) processes.

2.3 Observational Semantics

We now present a preorder on K nets yielding sensible semantic theories. We fol-
low the approach put forward in [12] and use may testing preorder and the associated
equivalence. Intuitively, two nets are may testing equivalent if they cannot be distin-
guished by any external observer. More precisely, an observer O is a net containing a
node whose address is a reserved locality name test. A computation reports success

if, along its execution, a datum at node test appears; this is written
OK
===⇒ .

Definition 2 (May Testing Preorder and Equivalence). May testing preorder,
, is

the least preorder on K nets such that, for every N
 M, it holds that N ‖ O
OK
===⇒

implies M ‖ O
OK
===⇒ , for any observer O.

May testing equivalence, �, is defined as the intersection of
 and �.

3 Implementing Distant Communications: A Routing Messenger

To better clarify the features of our calculus, we now present a simple routing applica-
tion. In the setting we introduced, a process at l can perform action out(t)@l ′ only if l
and l′ are directly connected. We now supply a protocol to deliver t from l to l ′ under the
assumption that there exists a path of links from l to l ′ in the connection graph. Clearly,
the example we present can be readily adapted to implement distant in, read and eval
actions.

For the sake of readability, we define a conditional construct to select one between
two processes for execution while discarding the other. It is defined as:

if � = �′ then P else Q � new(l).out(� = �′)@l.(in(tt)@l.P | in(ff)@l.Q)

where we assume tt and ff to be boolean values, and ‘=’ be the equality test for names.
As intended, it can be easily proved that, if � = � ′, then only P can evolve and, if � � � ′,
then only Q can evolve (see Proposition 2 below).

We assume that, for each pair of (possibly indirectly) connected localities l 1 and l2,
there is a (permanent and unique) tuple 〈l2, l3〉 at l1 recording the next directly connected
node l3 to visit for reaching l2.1 Now, the mobile agent delivering datum t from l to l ′ is

Deliver(t, l, l′) � new(l′′).out(l)@l′′.rec X.in(!x)@l′′.read(l′, !y)@x.
if y = l′ then out(t)@l′ else out(y)@l′′.eval(X)@y

Intuitively, the restricted locality l′′ acts as a repository storing the locality where the
process is currently running. The recursive part first retrieves the current locality x, then

1 The main goal of routing algorithms is to build this data structure (called routing table) at the
outset and to maintain its consistency during net evolution. In our setting, links do not change;
hence, the routing table is calculated once and for all at the outset. For a more dynamic setting,
see Sections 4.2 and 5.

gets the next node y to visit before reaching l ′; if such a node is l′ itself, then the current
node is directly connected to l′ and action out(t)@l′ ends the process, otherwise the
process migrates to node y and iterates its behaviour.

Soundness of the protocol can be formalized as follows. Let l ′ be the address of a
node in N; if l is connected to l′ in N, then

N ‖ l :: Deliver(t, l, l′) � N ‖ l′ :: 〈t〉 (1)

otherwise
N ‖ l :: Deliver(t, l, l′) � N ‖ l :: nil (2)

Intuitively, Equation (1) states that, if the target node is reachable from the source
one, then agent Deliver properly forwards the message to its destination; moreover,
the agent has no other visible effect on the overall net behaviour. On the other hand, if
the source and the target nodes are not (even indirectly) connected, then the activity of
agent Deliver is completely transparent for any external observer.

Proof.
To prove the above equations, we first give a Proposition collecting some very simple
equational laws. Then, we give another simple Proposition establishing soundness of
the if-then-else construct introduced before. The proofs of these facts can be easily
carried on by exploiting a co-inductive (bisimulation-based) proof technique provided
in Appendix A.

Proposition 1.
1. l :: out(t)@l′.P ‖ {l↔ l′} � l :: P ‖ {l↔ l′} ‖ l′ :: 〈t〉
2. l :: eval(Q)@l′.P ‖ {l↔ l′} � l :: P ‖ {l↔ l′} ‖ l′ :: Q
3. (νl′)(l :: in(T)@l′.P ‖ l′ :: 〈t〉) � (νl′)(l :: Pσ) if match(E[[T]]; t) = σ
4. (νl)(l :: C) � 0 whenever C is a datum 〈t〉, a stuck process nil or the parallel

composition of such components
5. l :: new(l′).P � (νl′)(l :: P)

Proposition 2.
1. if l = l then P else Q � P
2. if l = l′ then P else Q � Q, whenever l � l′.

Finally, we need a Proposition that regulates the access to the routing tables stored
in the nodes of the routing messenger example.

Proposition 3. If observers do not provide data of the form 〈l ′, ·〉 located at l, never
emit data of the form 〈l′, ·〉 at l, and never remove datum 〈l ′, l′′〉 from l, then

1. l :: 〈l′, l′′〉 | read(l′, !x)@l.P � l :: 〈l′, l′′〉 | P[l′′/x]
2. l :: read(l′, !x)@l.P � l :: nil

Notice that considering observers like those required in Proposition 3 is natural, if
we consider data 〈l′, ·〉 as entries of the routing table of l. No entry can be ever
added/removed during the computation: the routing table is deterministic (there is at

mostonepathfor eachl), it is calculatedat the outsetandnever changesduring the
computation.

We now prove thesoundnessof theprotocol.For Equation(1), we know that, if l
andl 	 areconnected,thenthereis a pathl � l 0 � l1 � . . . � ln � l 	 (for n � 0) in the
connectiongraphunderlyingN. We now proceedby inductiononn.

Base. In this case,l = l 	 andhence

N � l :: Deliver(t, l, l)
� (� l)(N � l :: if l = l then out(t)@l

elseout(l)@l 		 .eval(recX.in(!x)@l 		 .read(l, !y)@x.
if y = l then out(t)@l elseout(y)@l 		 .eval(X)@y)@l)

� N � l :: � t�

TheÞrst equalityis proved by usingPropositions1.5/.1/.3 and3.1,andby thefact
thatstructurallyequivalentnetsarealsomaytestingequivalent(easyto prove).The
secondequalityreliesonPropositions2.1,1.1 and1.4.

Induction. Let l � l0 � l1 � . . . � ln � l 	 . Thus

N � l :: Deliver(t, l, l)
� (� l)(N � l :: if l1 = l 	 then out(t)@l 	

elseout(l1)@l 		 .eval(recX.in(!x)@l 		 .read(l, !y)@x.
if y = l then out(t)@l elseout(y)@l 		 .eval(X)@y)@l1)

�
�

N � l :: � t� if l1 = l 	

N � l1 :: Deliver(t, l1, l) otherwise

� N � l :: � t�

TheÞrst andthesecondequalitieswhenl 1 = l 	 (thusn = 1) areproved like in the
basecase.The secondequalitywhenl 1 � l 	 is proved by usingPropositions2.2
and 1.1/. 2/. 1/. 5 . The third equality relies on a straightforward inductionor by
usingreßexivity of � , accordingto whetherl 1 � l 	 or not.

Weareleft with Equation(2): l andl 	 arenotconnected.Thus,thereis noassociation
� l 	 , ·� in theroutingtableof l andit will never appear. Thus,

N � l :: Deliver(t, l, l) � (� l)(N � l :: read(l 	 , !y)@l.if y = l 	 . . .)
� N � l :: nil

The Þrst equivalenceis proved like above, while the secondone relies on Proposi-
tions3.2and1.4.

4 Modelling Failur es

We now enrichthe basicframework with a mechanismfor modellingvariousforms
of failures,a key featureof globalcomputers.We startwith failureof nodesandnode
components;then,we usethis settingto prove the propertiesof a distributed fault-
tolerantprotocol.Finally, we sketcha minor modiÞcationof our framework to alsolet
nodelinks fail.

4.1 Failure of Nodes and Node Components

We start by letting only nodes and node components fail. This is simply achieved by
adding the operational rule

(R-FN) l :: C
−→ 0

that models corruption of data (message omission) if C � 〈t1〉| . . . |〈tn〉, node (fail-
silent) failure if l :: C collects all the clones of l, and abnormal termination of some
processes running at l otherwise. Modelling failures as disappearance of a resource (a
datum, a process or a whole node) is a simple, but realistic, way of representing fail-
ures, specifically fail-silent and message omission, in a global computing scenario [4].
Indeed, while the presence of data/nodes can be ascertained, their absence cannot be-
cause there is no practical upper bound to communication delays. Thus, failures cannot
be distinguished from long delays and should be modelled as totally asynchronous and
undetectable events.

For the sake of clarity, we shall denote with
 f and � f the may testing preorder
and equivalence obtained when adding rule (R-FN) to the rules in Table 3.

A Distributed Fault-tolerant Protocol: k–set Agreement We now use may testing to
verify the correctness of k–set agreement [8], a simple distributed fault-tolerant pro-
tocol. Suppose to have an asynchronous message-passing totally-connected distributed
system with n principals; each principal has an input value (taken from a totally ordered
set) and must produce an output value. The principals can fail and we adopt a fail-silent
model of failures; however, the communication medium is reliable, i.e. messages sent
will surely be received although the order and the moment in which messages will ar-
rive are unpredictable because of asynchrony. The agreement problem requires to find a
protocol that satisfies three properties: termination (i.e. the non-faulty principals even-
tually produce an output), agreement (i.e. all the non-faulty principals produce the same
output value) and validity (i.e. the output value must be one of the input values). It is
well-known (see, e.g. [2]) that a solution for this problem does not exists even if a single
failure occurs.

The k–set agreement problem relaxes the agreement property to enable the existence
of a solution. Indeed, for each 1 ≤ k ≤ n, it requires that, assuming at most k − 1 faulty
principals, the non-failed principals successfully complete their execution by producing
outputs taken from a set whose size is at most k. Notice that for k = 1 we get the
agreement problem without failures.

A possible solution for the k–set agreement problem is given by the following pro-
tocol, taken from [2], executed by each principal:

(i) send your input value to all principals (including yourself)
(ii) wait to receive n − k + 1 values

(iii) output the minimum value received
In this way, if we call I the set of the input values, the set of output values O is formed
by the k smallest values in I (for the sake of simplicity, we assume that the elements in
I are pairwise distinct; however, the protocol works even if input values are duplicated
– in this case I and O are multisets).

We let integers play the role of the input/output values, while principals are repre-
sented as distinct nodes, whose addresses are taken from the set l̃ � { l1, . . . , ln}; more-
over, we let di ∈ I to be the input value of the principal associated to the node whose
address is li. Once we fix the value for k, node l i hosts the process

Pk
i � out(di)@l1.out(di)@ln.in(!zi

1)@li.in(!zi
n−k+1)@li.out(mi)@l

with mi � min{zi
j : j = 1, . . . , n− k+ 1} and l be a distinct locality used to collect output

values. The net implementing the whole protocol is

Nk
n � (ν̃l)(n

Π
i=1

li :: Pk
i)

where we restricted the localities associated to the principals because no external con-
text is allowed to interfere with the execution of the protocol. Notice that, having re-
stricted the l̃, all the principals are connected and no out prefix will ever block P k

i (be-
cause of law (RN)). However, this does not prevent failures: the failure of (a reduct
of) Pk

i is indeed the failure of principal i.
A formulation of the three properties for the k–set agreement problem is given by

Equations (3) and (4) below, whose proof is in Appendix B. The formalization of k–set
agreement and validity properties is given by the Equation

Nk
n � f Mk

n (3)

There, we exploit the auxiliary net

Mk
n � (ν̃l, l̃′)(n

Π
i=1

(li :: Qk
i ‖ l′i :: Π

w∈O
〈w〉))

where
Qk

i � out(di)@l1. · · · .out(di)@ln.in(!zi
1)@li. · · · .

in(!zi
n−k+1)@li.in(mi)@l′i .out(mi)@l

We assume that nodes whose addresses are in l̃′ cannot fail; this is reasonable because
they are only auxiliary nodes and hence their failure is irrelevant for the original for-
mulation of the problem. Intuitively, node l ′i acts as a repository for li and contains the
possible output values (i.e. the elements of O), while the last in action of Q k

i is a test for
checking that the output value produced by the principal i is in O. The net M k

n obviously
satisfies the wanted properties since its principals output only values present in O. The
fact that |O| = k then implies the k–set agreement property, while the fact that O ⊆ I
implies validity.

In order to prove the termination property, it suffices to prove that

l ::
n−k+1
Π
j=1
〈〉
 f N̂k

n (4)

where N̂k
n � (ν̃l)(n

Π
i=1

(li :: P̂k
i ‖ {li ↔ l})) and processes P̂k

i is defined like Pk
i

with action out()@l in place of out(m i)@l. Clearly, if we only consider termination,
Nk

n and N̂k
n are equivalent, in the sense that a non-faulty principal produces an output

value in the first net if and only if its counterpart produces an output in the second net.
Equation (4) implies termination of the protocol, since it requires that at least n − k + 1

tuples are produced at l; by definition of the protocol, this is possible only if n − k + 1
principals terminate successfully.

In conclusion, we want to remark that other solutions to the agreement problem in
presence of failures have been given in literature. Some of these solutions use failure
detectors [7, 2]. Recently, one such solution has been formalized and proved sound by
using a process algebraic approach [15]. The solution in loc.cit. is, however, heavier
than ours and exploits properties of the operational semantics, instead of working in
a (simpler) equational setting. Moreover, it exploits failure detectors which are hardly
implementable in a global computing scenario.

4.2 Failure of Inter-Node Connections

The philosophy underlying our failure model can be easily adapted to deal with link
failures too. To this aim, we only need to add the operational rule

(R-FC) {l1 ↔ l2}
−→ 0

that models the (asynchronous and undetectable) failure of the link between nodes l 1

and l2.

Discovering Neighbours. Since the (multi)set of links in a net can change during com-
putations, the framework presented in Section 3 needs some adaption. Indeed, like in
practice, routing tables calculated at the outset must be updated during a computation,
because the original topology can change at runtime. This task is usually carried on
by routing algorithms. Several proposals have been presented in literature and different
standards use different solutions.

In general, routing algorithms are repeated at regular time intervals and consist in
two main phases: first, each node discovers its neighbours; then, it calculates its routing
table by usually sharing local information with its neighbours. We present here a simple
way to implement in K the first phase; the (more challenging) study of the second
phase is left for future work.

Neighbours can be discovered in a simple way. Each node l can try to send a “hallo”
message to another node l′; if this action succeeds, then a connection between l and l ′

does exist; otherwise, nothing can be said (e.g., the message could get lost or the link
could be congested and this caused a delay to the message). In our framework, no
explicit message is needed: a simple action eval(nil)@l ′ performed at l can be used as
test for existence of link {l ↔ l′} in the net. By letting � f still denote the may testing
equivalence in this refined framework, soundness of our solution can be formalized and
proved via the following equality (whose proof can be easily carried on by exploiting
the proof technique in Appendix A):

If N ≡ N′ ‖ {l↔ l′}, for some N ′, then

N ‖ l :: eval(nil)@l′.out(“CONN”, l, l′)@l � f N ‖ l :: 〈“CONN”, l, l′〉

5 Modelling Dynamic Connections

Finally, we present another variation of the basic language that let connections dynam-
ically evolve. To this aim, we add two actions to create and destroy a link, respectively;
formally, we add the production

a ::= . . .
∣∣∣ login(�)

∣∣∣ logout(�)

to the syntax of Table 1. Intuitively, the first action, when executed at node l, creates a
new link between l and �, if the latter name is associated to a network node. Conversely,
the second action, when executed at node l, dissolves a link between l and �, if such a
link exists. These intuitions are formalised by the following operational rules, that must
be added to those in Table 3:

(R-L) l :: login(l′).P ‖ l′ :: nil
−→ l :: P ‖ {l↔ l′}

(R-L) l :: logout(l′).P ‖ {l↔ l′}
−→ l :: P ‖ l′ :: nil

Again, for the sake of clarity, we denote with �d the may testing equivalence in the
calculus with dynamic connections.

Message Delivering in a Dynamic Net. To conclude, we now give an application of our
theory in a setting where node links change dynamically. To this aim, we use a simpli-
fied scenario inspired by the handover protocol, proposed by the European Telecommu-
nication Standards Institute (ETSI) for the GSM Public Land Mobile Network (PLMN).
The formal specification of the protocol and its service specification are in [18]; we use
here an adaption of their approach.

The PLMN is a cellular system which consists of Mobile Stations (MSs), Base Sta-
tions (BSs) and Mobile Switching Centers (MSCs). MSs are mobile devices that provide
services to end users. BSs manage the interface between the MSs and a stationary net;
they control the communications within a geographical area (a cell). Any MSC handles
a set of BSs; it communicates with them and with other MSCs using a stationary net.

A new user can enter the system by connecting its MS with a MSC that, in turn, will
decide the proper BS responsible for such a MS. Then, messages sent from the user
are routed to their destinations by the BS, passing through the MSC handling the BS.
However, it may happen that the BS responsible for a MS should be changed during
the computation (e.g., because the MS left the area associated to the BS and entered
in the area associated to a different BS). In this case, the MSC should carry on the
rearrangements needed to cope with the new situation, without affecting the end-to-end
communication.

We now model the key features of a PLMN in K; however, for the sake of
simplicity, several aspects will be omitted, like, e.g., the criterion to choose a proper
BS for a given MS, or the event originating an handover. Both MSs, BSs and MSCs are
modelled as nodes. For the sake of simplicity, we consider a very simple PLMN, with
one MSC (whose address is M) and two BSs (whose addresses are B1 and B2, resp.).

Let us start witht the process that performs the connecting formalities in M.

ENT ER � < gather a new connection f rom l > .read(!B)@BSlist.
eval(login(l))@B.logout(l).out(l, B)@Table

When a new user want to enter the PLMN, it has to perform a login(M) from his MS,
whose address is l; this generates an interrupt in M (that we do not model here) by
which the MSC can gather the address of the MS. This address, together with other
information (like the geographical area of the user or its credentials), are used by the
MSC to choose a proper BS; in our simplified framework, we let M take a BS’s address
from a private repository BSlist. Then, the MSC creates a new link from the chosen
BS to the MS and destroys the link from itself to the MS. Finally, it records in a private
repository Table the fact that the new MS is under the control of the chosen BS.

Once entered the PLMN, the new user can send some data d to (the MS of) a remote
user (whose address is l′); this is achieved by letting his MS (whose address is l) perform
an action of the form out(‘send’, l ′, d)@l. Then, the BSs associated to l and l′ come into
the picture to properly deliver the message. In particular, let B i be the BS associated to l
and B j be the BS associated to l′ (for i, j ∈ {1, 2}). Then, the message is forwarded from
Bi to B j by the process

FWDi � read(!x, Bi)@Table.in(‘send’, !y, !z)@x.in(y, !B)@Table.out(y, z)@B

This process first retrieves the address of a MS associated to B i (in particular, l); then,
it collects the message and forwards it to the BS associated to the destination MS.
Notice that, in doing this, it ‘locks’ the link between l ′ and B j until the message will
be delivered to l′ (see below); this is necessary to avoid that a handover may interfere
with the message delivering. Then, the message is collected by B j and passed to l′ by
the process

CLT j � in(!dest, !mess)@B j.out(mess)@dest.out(dest, B j)@Table

This process retrieves the message sent by B i and passes it to the final MS; then, it
releases the ‘lock’ on the link {B j ↔ l′} acquired by Bi by putting back in Table the
tuple 〈l′, B j〉. Clearly, there are also processes FWD j and CLTi running in B j and Bi

respectively, but they do not play any role here.
Finally, the handover is handled by the MSC via the following process:

HNDVR � in(!x, !B)@Table.read(!B′)@BSlist.
eval(logout(x))@B.eval(login(x))@B ′.out(x, B′)@Table

This process first selects a MS-to-BS association to be changed (the reason why this
is needed is not modelled here); then, it chooses a new BS, properly changes the links
between the MS and the BSs, and updates the repository Table.

The overall resulting system is

S YS � (νTable, BSlist, B1, B2)(M :: ∗ENT ER | ∗ HNDVR
‖ BSlist :: 〈B1〉 | 〈B2〉 ‖ Table :: nil
‖ B1 :: ∗FWD1 | ∗CLT1 ‖ B2 :: ∗FWD2 | ∗ CLT2)

where ∗P denotes the replication of P and stands for an unbounded number of copies
of P running in parallel. Replication can be easily encoded through recursion by letting
∗P be a shortcut for rec X.(P|X). Soundness of the system can be formulated as (a proof

sketch is in Appendix C):

(νl)(l :: login(M).out(‘send’, l′, ‘HI’)@l ‖ l′ :: login(M) ‖ S YS)
�d (νl)(l′ :: 〈‘HI’〉 ‖ S YS) (5)

Notice that l is restricted only to simplify proofs: soundness of the protocol is not af-
fected by the fact that the MSs are public or not.

6 Related Work

In the last decade, several languages for global computers have been proposed in liter-
ature; we mention here only the most strictly related ones.

In DJoin [14], located mobile processes are hierarchically structured and form a
tree-like structure evolving during the computation. Entire subtrees, and not only single
processes, can move and fail. Communication takes place in two steps: first, the sending
process sends a message on a channel; then, the ether (i.e. the environment containing
all the nodes) delivers the message to the (unique) process that can receive on that
channel. Failures are programmed (i.e., they result from the execution of some process
actions) and can be detected by processes. We believe that the setting presented in
this paper is more realistic than DJoin: first, we consider interconnection topologies
that are more general than trees; second, we do not assume any implicit engine for
distant communications; third, we model failures in a way that is closer to actual global
computers.

The Ambient calculus [5] is an elegant notation to model hierarchically structured
distributed applications. Like our work, the calculus is centered around the notion of
connections between ambients, that are containers of processes and data. Each language
primitive can be executed only if the ambient hierarchy is structured in a precise way;
e.g., an ambient n can enter an ambient m only if n and m are sibling, i.e. they are
both contained in the same ambient. However, like DJoin, Ambient strongly relies on
a tree-like structure for the ambient hierarchy. Moreover, to the best of our knowledge,
no explicit notion of failures, close to actual global computing requirements, has been
ever given for Ambient.

[20] presents N P, a distributed and agent-based language based on the π-
calculus. It relies on a flat net where named agents can roam. Communication between
two agents can take place only if they are located at the same node (thus no low-level
remote communication is allowed). However, the language also provides a (high-level)
primitive for remote communication, that transparently delivers a message to an agent
even if the latter is not co-located with the sender. This primitive is then encoded in the
low-level calculus by a central forwarding server, implemented by only using the low-
level primitives. The assumption that only co-located agents can communicate is, in
our opinion, too stringent. Moreover, it is not clear to us how the theory can be adapted
when failures enter the picture.

Finally, we want to remark that the use of observational equivalences to state and
proof soundness of protocols is a well-established technique in the field of process
calculi; some examples are [1, 17, 18, 21]. In particular, in the last paper, an automatic
verification tool to prove equivalences in the π-calculus is described. As an application,

the authors automatically verify an equality (more involved than ours) stating soundness
of the PLMN example.

References

1. M. Abadi and A. D. Gordon. Reasoning about cryptographic protocols in the Spi calculus.
In Proc. of CONCUR’97, volume 1243 of LNCS, pages 59–73. Springer, 1997.

2. H. Attiya and J. Welch. Distributed Computing. McGraw Hill, 1998.
3. L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-K.

In Proc. of the 7th WETICE, pages 110–115. IEEE, 1998.
4. L. Cardelli. Abstractions for mobile computation. In Secure Internet Programming: Security

Issues for Mobile and Distributed Objects, number 1603 in LNCS, pages 51–94. Springer,
1999.

5. L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–
213, 2000.

6. S. Castellani, P. Ciancarini, and D. Rossi. The ShaPE of ShaDE: a coordination system.
Tech. Rep. UBLCS 96-5, Dip. di Scienze dell’Informazione, Univ. di Bologna, Italy, 1996.

7. T. Chandra and S.Toueg. Unreliable Failure Detectors for Reliable Distributed Systems.
Journal of the ACM, 43(2):225–267, 1996.

8. S. Chaudhuri. More Choices Allow More Faults: Set Consensus Problems in Totally Asyn-
chronous Systems. Information and Computation, 105(1):132–158, 1993.

9. N. Davies, S. Wade, A. Friday, and G. Blair. L2imbo: a tuple space based platform for
adaptive mobile applications. In Int. Conference on Open Distributed Processing/Distributed
Platforms (ICODP/ICDP’97), 1997.

10. R. De Nicola, G. Ferrari, and R. Pugliese. K: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.

11. R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for global comput-
ing. Technical Report 07/2004, Dip. di Informatica, Univ. di Roma “La Sapienza”. Available
at http://www.dsi.uniroma1.it/˜gorla/papers/bo4k-full.pdf.

12. R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical Computer
Science, 34:83–133, 1984.

13. D. Deugo. Choosing a Mobile Agent Messaging Model. In Proc. of ISADS 2001, pages
278–286. IEEE, 2001.

14. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile agents.
In Proc. of CONCUR ’96, volume 1119 of LNCS, pages 406–421. Springer, 1996.

15. R. Fuzzati, M. Merro, and U. Nestmann. Modelling Consensus in a Process Calculus. In
Proc. of CONCUR’03, volume 2761 of LNCS. Springer-Verlag, 2003.

16. D. Gelernter. Generative communication in linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

17. R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Specification,
volume 94 of Series F. NATO ASI, Springer, 1993.

18. F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal Aspects of
Computing, 4:497–543, 1992.

19. J. Parrow. An introduction to the pi-calculus. In Handbook of Process Algebra, pages 479–
543. Elsevier Science, 2001.

20. A. Unyapoth and P. Sewell. Nomadic Pict: Correct Communication Infrastructures for Mo-
bile Computation. In Proc. of POPL’01, pages 116–127. ACM Press, 2001.

21. B. Victor and F. Moller. The Mobility Workbench — a tool for the π-calculus. In Proc. of
CAV ’94, volume 818 of LNCS, pages 428–440. Springer, 1994.

A Labelled Bisimulation as a Proof Technique for May Testing
Equivalence

Here we briefly sum up and re-adapt some of the theory presented in [11]. The main
goal of this section is to provide a easy to handle way to establish equalities under may
testing equivalence. Indeed, may testing is hardly usable in practice because of its uni-
versal quantification over observers. To this aim, we present a co-inductive bisimulation
that can be used to infer equalities under a may testing semantics.

The first step in this direction is to make apparent the actions a net intend to perform
in order to evolve. To this aim, we define a labelled transition relation,

α
−→ , defined as

the least relation over nets induced by the inference rules in Table 4. Transition labels
take the form

χ ::= τ
∣∣∣ (ν̃l) I @ l

∣∣∣ l1 → l2 α ::= χ
∣∣∣ l1 :
 l2

∣∣∣ l1 : t � l2

where
I ::= nil

∣∣∣ (ν̃l) 〈t〉@ l

groups together those node components, called inert, that cannot perform any action.
We will write bn(α) for l̃ if α = (ν̃l) I @ l , and for ∅ otherwise; fn(α) is defined ac-
cordingly. Transitions labelled with τ are the only computational steps: it can be proved
that they are in a 1-to-1 correspondence with reductions. Labels nil @ l , (ν l̃) 〈t〉 @ l
and l1 → l2 describe net’s structure: they signal, respectively, the existence of a node
with address l, of a datum 〈t〉 at node l containing the restricted names l̃, and of a link
between l1 and l2. Finally, label l1 :
 l2 (l1 : t � l2 , resp.) declares the intention of
some process located at l1 to send components to (receive the datum t from) node l 2.

Let us now briefly comment on some rules of the LTS; most of them are adapted
from the π-calculus [19]. Rule (LTS-E) points out existence of nodes (label
nil @ l) or of data (label 〈t〉 @ l), while rule (LTS-L) points out existence of
links. Rules (LTS-O) and (LTS-E) spawn a component, but they require the ex-
istence of a link between the source and the target node in order to get concretised,
see rule (LTS-S). Rules (LTS-I) and (LTS-R) require the existence of the cho-
sen datum in the target node, and of a proper link, in order to get concretised, see rule
(LTS-C). Rule (LTS-O) signals extrusion of bound names. As in some presenta-
tions of the π-calculus, (LTS-O) is used to investigate the capability of processes to
export bound names, rather than to really extend the scope of bound names. To this last
aim, structural scope extension is used; in fact, in rules (LTS-S) and (LTS-C)
labels do not carry any restriction on names (whose scope must have been previously
extended). Rules (LTS-R), (LTS-P) and (LTS-S) are standard.

In [11], we have defined a labelled bisimulation on top of a similar LTS. There, we
have also proved that such a relation is an equivalence and it is a sound proof technique
for a similarly defined may testing equivalence2. As usual, we let =⇒ stand for the
reflexive and transitive closure of

τ
−→ , and

α
=⇒ stand for =⇒

α
−→ =⇒ (where juxtaposition

2 More precisely, in [11] we proved that a similar bisimulation coincides with a standardly de-
fined barbed congruence. This fact, together with the usual inclusion of barbed congruence in
may testing equivalence, yields the claimed proof technique.

(LTS-O)
E[[t]] = t′

l :: out(t)@l′.P
l :
 l′
−−−−−→ l :: P ‖ l′ :: 〈t′〉 ‖ {l↔ l′}

(LTS-N)

l :: new(l′).P
τ
−→ (νl′)(l :: P)

(LTS-E)

l :: eval(Q)@l′.P
l :
 l′
−−−−−→ l :: P ‖ l′ :: Q ‖ {l↔ l′}

(LTS-E)

l :: I
I @ l
−−−−→ l :: nil

(LTS-I)
match(E[[T]]; t) = σ

l :: in(T)@l′.P
l : t � l′
−−−−−−→ l :: Pσ ‖ {l↔ l′}

(LTS-L)

{l1 ↔ l2}
l1→ l2
−−−−−→ 0

(LTS-R)
match(E[[T]]; t) = σ

l :: read(T)@l′.P
l : t � l′
−−−−−−→ l :: Pσ ‖ {l↔ l′} ‖ l′ :: 〈t〉

(LTS-C)

N1
l1 : t � l2
−−−−−−→ N′1 N2

l1→ l2
−−−−−→

〈t〉 @ l2
−−−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-S)

N1
l1 :
 l2
−−−−−→ N′1 N2

l1→ l2
−−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-O)

N
(ν̃l) 〈t〉 @ l′
−−−−−−−−→ N′ l ∈ fn(t) − {̃l, l′}

(νl)N
(ν̃l,l) 〈t〉 @ l′
−−−−−−−−−→ N′

(LTS-R)

N
α
−→ N′ l � n(α)

(νl)N
α
−→ (νl)N′

(LTS-P)

N1
α
−→ N2 bn(α) ∩ fn(N) = ∅

N1 ‖ N
α
−→ N2 ‖ N

(LTS-S)

N ≡ M
α
−→ M′ ≡ N′

N
α
−→ N′

Table 4. K Labelled Transition System

denotes relation composition); moreover,
α̂
=⇒ stands for =⇒ , if α = τ, and for

α
=⇒ ,

otherwise.

Definition 3. A symmetric relation� between K nets is a (weak) bisimulation if,
for each N1 � N2, it holds that:

1. if N1
χ
−→ N′1 then N2

χ̂
=⇒ N′2 and N ′1 � N′2, for some N′2;

2. if N1
l1 :
 l2
−−−−−→ N′1 then N2 ‖ {l1 ↔ l2} =⇒ N′2 and N ′1 � N′2, for some N′2;

3. if N1
l1 : t � l2
−−−−−−→ N′1 then N2 ‖ l2 :: 〈t〉 ‖ {l1 ↔ l2} =⇒ N′2 and N ′1 � N′2, for some N′2.

Bisimilarity,≈, is the largest bisimulation.

Bisimilarity requires that τ-steps must be replied to with zero or more τ-steps. Sim-
ilarly, labels of the form (ν l̃) I @ l or l1 → l2 must be replied to with the same label

(possibly together with some additional τ-step). This is necessary since such labels de-
scribe the structure of the net (its nodes, data and connections): to be equivalent, two
nets must have at least the same structure.

Labels of kind χ describe facts, i.e. computational steps or the structure of a net;
thus, they must be faithfully replied to. On the other hand, labels different from χ only
express intentions; thus, they are handled differently. For example, the intention of send-

ing a component, say N1
l1:
 l2
−−−−−→ N′1, can be simulated by a net N2 (in a context where

l1 and l2 are connected) through execution of some τ-steps that lead to some N ′2 equiv-
alent to N′1. Indeed, since we want our bisimulation to be a congruence, a context that
provides a link between the source and the target nodes of the sending action must not
tell apart N1 and N2. Similar considerations also hold for the case of the input actions
(third item of Definition 3), but the context now is [·] ‖ {l 1 ↔ l2} ‖ l2 :: 〈t〉.

Theorem 1. ≈ ⊂ �

Bisimulations with Failures. We only need to properly extend the LTS to model fail-
ures of nodes, node components and inter-node connections. This can be achieved with
the expected rules:

(LTS-FN) l :: C
τ
−→ 0 (LTS-FC) {l1 ↔ l2}

τ
−→ 0

The bisimulation defined on top of the modified LTS, that we write ≈f , is a sound proof
technique for the corresponding may testing equivalence � f .

Bisimulations with Dynamic Connections. First, we need to properly extend the LTS
to accomodate actions login and logout. This can be achieved with the following rules:

(LTS-L) l1 :: login(l2).P
l1 : l2
−−−−→ l1 :: P ‖ {l1 ↔ l2}

(LTS-L) l1 :: logout(l2).P
l1 : ¬ l2
−−−−−−→ l1 :: P ‖ l2 :: nil

Clearly, fn(l1 : l2) = fn(l1 : ¬ l2) = {l1, l2} and bn(l1 : l2) = bn(l1 : ¬ l2) = ∅.
As we said in Section 5, the intention of connecting or disconnecting to a remote node
(as expressed by rules (LTS-L) and (LTS-L), respectively) gets concretised
when the target node or the connection we want to delete do exist. This is formalised
by the following rules:

(LTS-C)

N1
l1 : l2
−−−−→ N′1 N2

nil @ l2
−−−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-D)

N1
l1 : ¬ l2
−−−−−−→ N′1 N2

l1→ l2
−−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

The definition of bisimulation extends ≈ to encompass also the intentions ex-
pressed by labels l1 : l2 and l1 : ¬ l2 . Formally, it suffices to extend Definition 3
with the following two requirements:

4. if N1
l1 : l2
−−−−→ N′1 then N2 ‖ l2 :: nil =⇒ N′2 and N ′1 � N′2, for some N′2;

5. if N1
l1 : ¬ l2
−−−−−−→ N′1 then N2 ‖ {l1 ↔ l2} =⇒ N′2 and N ′1 � N′2, for some N′2.

We call≈d the resulting bisimilarity that is a sound proof technique for � d.

B Proofs for the k-Set Agreement Example

To prove the properties formulated in Section 4, we first need a new equality

l :: I1| . . . |In
 f l :: I1| . . . |Im if n ≤ m (†)

Second, we need to smoothly adapt some of the equalities put forward by Proposition 1:
the first equality holds only under the hypothesis that l ′ is restricted, while the third
equality holds only under the further hypothesis that 〈t〉 is not corruptible at l ′ (with “〈t〉
is not corruptible at l′ ”, we mean that l′ :: 〈t〉 does never fail). Then, we prove Equation
(3) as follows:

Nk
n � f (ν̃l)(n

Π
i=1

li :: in(!zi
1)@li.in(!zi

n−k+1)@li.out(mi)@l | 〈d1〉 | . . . | 〈dn〉)
� f (ν̃l)(n

Π
i=1

li :: out(m′i)@l | 〈di1〉 | . . . | 〈dik−1〉)
� f (ν̃l, l̃′)(n

Π
i=1

(li :: in(m′i)@l′i .out(m′i)@l | 〈di1〉 | . . . | 〈dik−1〉 ‖ l′i :: Π
w∈O
〈w〉))

� f (ν̃l, l̃′)(n
Π
i=1

(li :: in(!zi
1)@li.in(!zi

n−k+1)@li.in(mi)@l′i .out(mi)@l

| 〈d1〉 | . . . | 〈dn〉 ‖ l′i :: Π
w∈O
〈w〉))

� f Mk
n

where m′i denotes mi[d̃/̃z], with d̃ � {d1, . . . , dn} − {di1 , . . . , dik−1} and z̃ � {z1, . . . , zn−k+1}.
The first and the last steps have been inferred by applying several times (the revised
formulation of) Proposition 1.1 . The second and the fourth steps have been inferred by
applying several times (the revised formulation of) Proposition 1.3; notice that, since
the number of failures is at most k − 1, the number of non-corruptible data present
in each li is at least n − k + 1. The third step relies on Proposition 1.3 and .4 . It is
worth to notice that m′i ∈ O because, since |O| = k, at least one principal whose input
value, say d′, is in O has not failed; hence d ′ has been received by all the (non-failed)
principals. Moreover, we assumed that the l̃′ cannot fail and hence the data they host
are uncorruptable.

To conclude, we are left with proving Equation (4). This can be done very similarly
as follows:

N̂k
n � f (ν̃l)(n

Π
i=1

li :: in(!zi
1)@li.in(!zi

n−k+1)@li.out()@l | 〈d1〉 | . . . | 〈dn〉 ‖ l :: nil)
� f (ν̃l)(n

Π
i=1

li :: out()@l | 〈di1〉 | . . . | 〈dik−1〉 ‖ l :: nil)
� f l ::

n
Π
j=1
〈〉

� f l ::
n−k+1
Π
j=1
〈〉

The first two steps are derived in the same way. The third step is derived using (the
revised version of) Proposition 1.1 and Proposition 1.4. The fourth step derives from
(†).

C Proofs for the Message Delivering in a Dynamic Net

First, we need two laws for the primitives login and logout, that are quite expectable.

l :: login(l′).P ‖ l′ :: nil �d l :: P ‖ {l↔ l′} (�)

l :: logout(l′).P ‖ {l↔ l′} �d l :: P ‖ l′ :: nil (��)

Moreover, we also need an adapted version of Proposition 1.3 to deal with action read.
It is defined as follows:

(νl′)(l :: read(T)@l′.P ‖ l′ :: 〈t〉) �d (νl′)(l :: Pσ ‖ l′ :: 〈t〉)
if match(E[[T]], t) = σ. (‡)

We are ready to prove Equation (5), yielding the soundness of the protocol for the
PLMN. It is easy to prove that

(νl)(l :: login(M).out(‘send’, l′, ‘HI’)@l ‖ l′ :: login(M) ‖ S YS)

�d (νl, Table, BSlist, B1, B2)(l :: 〈‘send’, l′, ‘HI’〉 ‖ l′ :: nil
‖ M :: ∗ENT ER | ∗ HNDVR ‖ BSlist :: 〈B1〉 | 〈B2〉

‖ Table :: 〈l, Bi〉 | 〈l′, B j〉 ‖ {l↔ Bi} ‖ {l′ ↔ B j}

‖ B1 :: ∗FWD1 | ∗ CLT1 ‖ B2 :: ∗FWD2 | ∗ CLT2)

�d (νl, Table, BSlist, B1, B2)(l :: nil ‖ l′ :: nil
‖ M :: ∗ENT ER | ∗ HNDVR ‖ BSlist :: 〈B1〉 | 〈B2〉

‖ Table :: 〈l, Bi〉 | 〈l′, B j〉 ‖ {l↔ Bi} ‖ {l′ ↔ B j}

‖ B1 :: ∗FWD1 | ∗ CLT1 ‖ B2 :: ∗FWD2 | ∗ CLT2
‖ Bi :: in(l′, !B)@Table.out(l′, ‘HI’)@B)

� K

The first equality can be inferred using laws (�) and (‡), Proposition 1.2, laws (�)
and (��), and Proposition 1.1; the second equality can be inferred using law (‡) and
Proposition 1.3. Now we cannot proceed equationally: indeed, there are two paral-
lel components that may want to retrieve the tuple 〈l ′, B j〉 at Table, i.e. the process
in(l′, !B)@Table.out(l′, ‘HI’)@B running at Bi and the process HNDVR running at M.
This fact makes Proposition 1.3 not applicable here.

To overcome this problem, we observe that there are only three possible evolutions
for K: make a handover for l, make a handover for l ′, or complete the delivering of the
message that l sent to l′. The first evolution is compatible with the latter two ones that, in
turn, are mutually exclusive. Thus, letH be the set of pairs (N, (νl)(l ′ :: 〈‘HI’〉 ‖ S YS)),
where N is any reduct of K obtained by giving the precedence to the handover of l ′ w.r.t.
the message delivering. Symmetrically, let D be the set of pairs (N, (νl)(l ′ :: 〈‘HI’〉 ‖
S YS)), where N is any reduct of K obtained by giving the precedence to the message
delivering w.r.t. the handover of l ′. Now, it can be easily proved that

{ (K, (νl)(l′ :: 〈‘HI’〉 ‖ S YS)) } ∪ H ∪ D

is a bisimulation. By the fact that ≈d ⊂ �d and by transitivity of �d, this suffices to
prove Equation (5).

A Theory of System Behaviour in the Presence of
Failures

Adrian Francalanza1 and Matthew Hennessy1

University of Sussex, Falmer Brighton BN1 9RH, England,
{adrianf,matthewh}@sussex.ac.uk

Abstract. We develop a behavioural theory of distributed systems in the pres-
ence of failures. The framework we use is that of Dπ, a language in which located
processes, or agents, may migrate between dynamically created locations. These
processes run on a distributed network, in which individual nodes may fail, or the
links between them may be broken. The language is extended by a new construct
for detecting, and reacting to these failures.
We define a bisimulation equivalence between these systems, based on labelled
actions which record, in addition to the effect actions have on the processes, the
actual state of the underlying network and the view of this state known to ob-
servers. We prove that the equivalence is fully abstract, in the sense that two sys-
tems will be differentiated if and only if, in some sense, there is a computational
context, consisting of a network and an observer, which can see the difference.

1 Introduction

It is generally accepted that location transparency is not attainable over wide-area net-
works, [5], that is large computational infrastructures which may even span the globe.
Because of this various location-aware calculi and programming languages have arisen
in the literature; not only do these emphasise the distributed nature of systems but they
also assume that the various system components, processes or agents, are aware of their
location in the network, and perhaps also aware of some aspect of the underlying net-
work topology. So computations take place at distinct locations, physical or virtual, and
processes may migrate between the locations of which they are aware, to participate in
such computations.

It is also argued in [5] that failures, and the ability to react to them, are also an in-
evitable facet of these infrastructures, which must be taken into account when designing
languages for location-aware computation. The purpose of this paper is to

– invent a simple framework, a distributed process calculus, for describing computa-
tions over a distributed network in which individual nodes and links between the
nodes are subject to failures

– use this framework to develop a behavioural theory of distributed systems in which
these failures are taken into account.

The framework is an extension of the distributed calculus Dπ [10], in which system
configurations now take the form

Π . N

where Π is a representation of the current state of the network, and N describes the cur-
rent state of the (software) system executing in a distributed manner over the network.
Here Π will record the set of nodes in the network, their status, that is whether they
are alive or dead, the set of (symmetric) links between these nodes, and whether any
of these links are broken. On the other hand N will be more or less a standard system
description from Dπ, consisting of a collection of communicating located processes,
which also have the ability to create new locations (and their links in the network),
and to migrate between them. We will also augment the language with a construct for
reacting to network failures. We believe that this results in a succinct but expressive
framework, in which many of the phenomena associated with network failures can be
examined; the details may be found in Section 2.

The behavioural theory is takes the form of (weak) bisimulation equivalence, [12]
based on labelled actions of the form

Π . N
µ
−→ Π ′ . N′ (1)

where the label µ represents the manner in which an observer, also running on the net-
work Π , can interact with the system N. This interaction may change the state of the
system, to N′, in the usual manner, but it may also affect the nature of the underlying
network. For example an observer may extend the network by creating new locations;
but we also allow the observer to kill sites, or break links between sites, thereby captur-
ing at least some of the reaction of N to dynamic failures.

However the definition of these actions needs to be relatively sophisticated. Intu-
itively the action (1) above is meant to simulate the interaction between an observer
and the system. But, although the system and the observer may initially share the same
view of the underlying network, interactions quickly give rise to situations in which
these views diverge. In general observers may not be aware of all the nodes, or links,
in a network; they think a particular node is inaccessible because they are not aware of
links to it; and they may not be aware of the status of such an inaccessible node, pre-
cisely because it is inaccessible. So in (1) above the network representation Π , needs to
record the actual state of the underlying network, and the observers view of it.

In Section 3 we present an initial definition of these actions, based on the general
approach of [9]. The resulting bisimulation equivalence can be used to demonstrate
equivalencies between systems, but we show, by a series of examples, that in general
it is too discriminating. In the next section we revise the definition of these actions,
essentially by abstracting from internal information present in the action labels, and
show that the resulting equivalence is fully abstract with respect to an intuitive form of
contextual equivalence; that is two systems will be differentiated by the bisimulation
equivalence if and only if, in some sense, there is a computational context, consisting
of a network and an observer, which can see the difference.

2 The language

We assume a set of variables V, ranged over by x, y, z, . . . and a separate set of
names, N, ranged over by n,m, . . . , which is divided into locations, L, ranged

T,U ::= ch | 〈A,L〉 A,B ::= a | d
L,K ::= {u1, . . . , un}

P,Q ::= u!〈V〉.P | u?(X).P | ∗ u?(X).P | 0 | P|Q | (u1 = u2).PdQe
| (νn : T)P | mv u(P)dQe | break l | kill

N,M ::= l[[P]] | (νn : T)N | N |M

Fig. 1. Syntax of the DπF

over by l, k, . . . and channels, C, ranged over by a, b, c, Finally we use u, v, . . .
to range over the set of identifiers, consisting of either variables and names.

The syntax of DπF is given in Figure 1, where the main syntactic category is that
of systems, ranged over by M,N; these are essentially a collection of located processes,
or agents l[[P]], but there may also be occurrences of typed scoped names, (νn : T)N.
Although we could employ the full power of the type system for Dπ [8], for simplicity
we use a very simple notion of type, and adapt it the purpose at hand. Thus if n is used
as a channel in N, then T is simply ch; however if it is a location then T = 〈A,L〉
records it’s status A, whether it is alive a or dead d, and the set of locations L to which
it is linked, {l1, . . . , ln}.

The syntax for agents, P,Q, is an extension of that in Dπ. There is input and output
on channels; here V is a tuple of identifiers, and X a tuple of variables, to be interpreted
as a pattern. We also have the standard forms of parallel, replicated input, local dec-
larations, and a test for equality between identifiers. The migration construct of Dπ is
replaced with conditional migration in the spirit of an exception throwing remote com-
munication construct over the TCP level of abstraction[13, 1]. Intuitively l[[mv k(P)dQe]]
attempts to spawn the code P at the location k; however the state of the network might
preclude access of location k from l, in which case the residual ”exception code” Q is
executed at the original site l. Finally we have two new constructs to simulate failures;
l[[kill]] kills the location l, while k[[break l]] results in the link between l and k being
broken, if it exists. We are not really interested in programming with these last two op-
erators; but when we come to consider contextual behaviour their presence will mean
that the behaviour will take account the effects of dynamic failures.

In this extended abstract we will assume the standard notions of free and bound oc-
currences of both names and variables, and the associated concepts of α-conversion and
substitution. Furthermore we will assume that all system terms have no free occurrences
of variables.

Reduction semantics: This takes the form of a binary relation

Π . N −→ Π ′ . N′ (2)

where Π and Π ′ are representations of the state of the network. Intuitively this must
record the set of locations in existence, whether they are alive or dead, and the exis-

tence of any links between them. We choose what may seem like an overly complicated
representation for this information; but our approach will prove to be very convenient
when we later give a labelled transition system for the language.

Definition 1 (Link sets). A link set consists of a finite collection of pairs of locations,
{l1 ↔ k1, . . . , ln ↔ kn}; note that there is no difference between the links l ↔ k and
k ↔ l.
Let G be a linkset.

– We use loc(G) to denote the set of locations occurring in G.
– refLoc(G) is the set of locations l such that l↔ l is in G
– G is said to be reflexive if loc(G) = refLoc(G)
– finally G is semi-reflexive if l↔ k ∈ G implies l ∈ refLoc(G) or k ∈ refLoc(G)

We use link sets to represent the current state of a network. It will be convenient to split
the representation into two such sets, one between the nodes which are alive, and the
other containing any link involving a dead node.

Definition 2 (Simple network representations). A simple network representation con-
sists of a triple 〈N ;S;D〉 where

N is a set of names denoting all the free names in the system. For bookkeeping purposes
this includes both channel and node names; so N = chan(N) ∪ loc(N).

S: is reflexive linkset denoting the live nodes of the network refLoc(S), and the links
between them.

D is a semi-reflexive linkset that denotes the nodes that are dead in the network to-
gether with the links connected to these dead nodes. The dead nodes may be taken
to be refLoc(D).

We will assume that all simple network representations satisfy constraints which assure
that the three components are mutually consistent.

– loc(S,D) ⊆ loc(N) × loc(N)
– refLoc(S) ∩ refLoc(D) = ∅ (a node is either dead or alive)
– refLoc(S) ∪ refLoc(D) = loc(N) (the state of every node is known)

So we may take Π and Π ′ in (2) above to be simple network representations. Formally
we call pairs Π . N configurations, ranged over by the metavariables C,D, E, whenever
every free name in N occurs in the name component of Π , and we define reductions
to take place between such configurations. Since not every node is interconnected, the
reduction semantics is based on the notion of a livepath between nodes, which is a chain
of links where every intermediate node is alive. We thus say that a node k is accessible
from node l if there exists a livepath between the two nodes.

For convenience the rules governing these reductions are given in the three separate
figures. These rely on certain notation for checking the state of nodes and links in a
network, and of updating the network; in this extended abstract this notation is only
explained informally, due to lack of space, but the intentions should be straightforward.

The first set of rules, in Figure 2, give the standard rules for (local) communication,
and the management of replication, matching and parallelism, and are derived from the

Assuming Π ` l : alive

(r-comm)

Π . l[[a!〈V〉.P]] | l[[a?(X).Q]] −→ Π . l[[P]] | l[[Q{V/X}]]

(r-rep)

Π . l[[∗a?(X).P]] −→ Π . l[[a?(X).(P| ∗ a?(Y).P{Y/X})]]

(r-eq)

Π . l[[(n = n).PdQe]] −→ Π . l[[P]]

(r-neq)

Π . l[[(n = m).PdQe]] −→ Π . l[[Q]]
n , m

(r-fork)

Π . l[[P|Q]] −→ Π . l[[P]] | l[[Q]]

Fig. 2. Local Reduction Rules(1)

Assuming Π ` l : alive

(r-move)

Π . l[[mv k(P)dQe]] −→ Π . k[[P]]
Π ` k : alive, l↔ k

(r-nmove)

Π . l[[mv k(P)dQe]] −→ Π . l[[Q]]
Π 0 k : alive, l↔ k

(r-new)

Π . l[[(νn : U)P]] −→ Π . (νn : T)l[[P]]
T = inst(U, l, Π)

(r-kill)

Π . l[[kill]] −→ (Π − l) . l[[0]]

(r-brk)

Π . l[[break k]] −→ (Π − l↔ k) . l[[0]]
Π ` l↔ k

Fig. 3. Network Reduction Rules (2) for DπF

corresponding rules for Dπ in [10]. But note that they are all depend on the requirement
that l, the location of the activity, is currently alive; this is the intent of the predicate
Π ` l : alive.

The second set, in Figure 3, is more interesting. Again all the reductions rely on the
assumption that the site of focus l is alive. The first rule, (r-move), says that mv k(P)dQe,
running at location l can spawn agent P, at k, provided k is accessible from l in the
current network Π ; This is the import of the side conditions Π ` k : alive, l ↔ k.
Similarly if this condition is not true, by (r-nmove) the residual Q is launched locally at
l. The rules (r-kill), (r-brk) make the obvious changes to the current network. (Π−l) means

changing l to be a dead site in Π if it is alive, while Π − l ↔ k means removing the
link between l and k if it exists; for lack of space we omit the formal definitions. Finally
(r-new) regulates the generation of new names; if U is simply ch then inst(U, l, Π) also
evaluates to ch; if U is a location type 〈A,L〉, then inst(U, l, Π) returns the location type
T = 〈A,K〉, where K is the set of locations in L accessible to l in the current network
Π .

(r-str)
Π . N′ ≡ Π . N Π . N −→ Π ′ . M Π ′ . M ≡ Π ′ . M′

Π . N′ −→ Π ′ . M′

(r-ctxt-rest)
Π + n : T . N −→ Π ′ + n : U . M
Π . (νn : T)N −→ Π ′ . (νn : U)M

(r-ctxt-par)
Π . N −→ Π ′ . N′

Π . N|M −→ Π ′ . N′|M
Π . M|N −→ Π ′ . M|N′

Π ` M

Fig. 4. Contextual Reduction Rules(3)

Finally in Figure 4 we have an adaptation of the standard contextual rules, which
allow the basic reductions to occur in evaluation contexts. The rule (r-str) allows re-
ductions up to a structural equivalence, in the standard manner. This equivalence is the
least one generated in the usual way from the identities in Figure 5 defined over systems,
that extends naturally to configurations with the same network Π . The only non-trivial
identity in Figure 5 is (s-flip-2), in which the types of the successively scoped locations
need to be changed if they denote a link between them, thus avoiding unwanted name
capture. The rules (r-ctxt-par) and (r-ctxt-rest) allow reductions to occur under contexts;
note that the latter is somewhat non-standard, but as reductions can change the under-
lying network, it may be that the connectivity of the scoped name n is affected by the
reduction, thereby changing T to U.

(s-comm) N|M ≡ M|N
(s-assoc) (N |M)|M′ ≡ N |(M|M′)
(s-unit) N |l[[0]] ≡ N
(s-extr) (νn : T)(N |M) ≡ N |(νn : T)M n < fn(N)
(s-flip-1) (νn : T)(νm : U)N ≡ (νm : U)(νn : T)N n < U
(s-flip-2) (νl : 〈A,L〉)(νk : 〈B,K ∪ {l}〉)N ≡ (νk : 〈B,K〉)(νl : 〈A,L ∪ {k}〉)N

Fig. 5. Structural Rules for Dπ f

This completes our exposition of the reduction semantics. But at this point we
should point out that in a configuration such as Π .N, contrary to what we have implied
up to now, Π does not give a completely true representation of the network on which
the code in N is running.

Example 1. Let Π represent the network 〈{l, a}; {l ↔ l}; ∅〉 consisting of a channel a
and a live node l and M the system

(νk2 : 〈a, ∅〉)(νk1 : 〈d, {l, k2}〉)l[[a!〈k2〉.P]]

Here M generates two new locations k1, k2, where k1 is dead and linked to the existing
node l and k2 is alive linked to k1. Although Π only contains one node l, effectively
the located process l[[a!〈k2〉.P]] is running on a network of three nodes, two of which,
k1, k2 are scoped, that is not available to other systems. We can informally represent
this network by

d dt� �- -
l νk1 νk2

where the nodes ◦ and • denote live and dead nodes respectively. At this point we note
that the same network could be denoted by the system M′

(νk1 : 〈d, {l}〉)(νk2 : 〈a, {k1}〉)l[[a!〈k2〉.P]]

Note also that the two systems are structurally equivalent, M ≡ M′, through (s-flip-2).
As a notational abbreviation, in all future example we will omit the status annotation,
a, in location declarations; so for example system M′ would be given as

(νk1 : 〈d, {l}〉)(νk2 : {k1})l[[a!〈k2〉.P]]

3 A Labelled transition system

In this section we give a labelled transition system for the language, in which the la-
belled actions are intended to mimic the possible interactions between a system and an
observer; it is natural to assume that both share the same underlying network. However
this first example demontrates that our representation of this joint network is no longer
sufficient, if we want to faithfully record the effect interactions have on systems.

Example 2. Let Π and M be defined as in the last example. An observer N at site l,
such as l[[a?(x).P(x)]], can gain knowledge of the new location k2, thereby evolving to
l[[P(k2)]]. But even though it is in possession of the name k2, it’s knowledge of the state
of the underlying network is no longer represented by Π , and there is now a mismatch
between the observes view of the network, and the systems view. The system view is
now Π ′ = 〈{a, l, k2}; {l ↔ l, k2 ↔ k2}; ∅〉, or Π augmented by the scope extrusion of
the live node k2 linked to a private (dead) node k1, which in turn is linked to the node l;
informally it may be depicted as

d dt� �- -
l νk1 k2

In this diagram the open nodes l, k2 are alive and accessible for the system to use;
moreover they are linked via a private node k1. But the observer’s view is quite different.
The node l is accessible to the observer, since it has code running there; on the other
hand, even though the observer knows about k2 at l in P(k2), it does not have enough
information to determine a livepath to access k2 from l. As a result, it has no means
how to determine k2’s state in terms of its status and connections. This means that the
representation of the observers view, requires a new kind of annotation, for nodes such
as k2 which are known, but not accessible:

d ?
l k2

This example demonstrates is that in order to give an lts semantics we need to extend
our representations of networks.

Definition 3 (Network representations). A network representation is a 4-tuple 〈N ;S;S;D〉,
whereN , S andD are as in Definition 2, andS is another reflexive linkset that denotes
the live nodes that are not accessible to the observer together with the links between
these inaccessible nodes.

Note that simple network configurations can be viewed as a degenerate form of network
representations, where the S component is empty. Also the reduction semantics of the
previous section can be viewed as a relation over configurations; it is simply a matter of
extending the various side conditions on the rules from simple network representations
to full representations. The operation ↑ (Π) for Π = 〈N ;S〉SD returns a network with
no hidden live nodes, 〈N ;S ∪ S〉∅D.

With this extended notion we can now represent the observers view of the network
above; N = {a, l, k2}, S = {l ↔ l}, S = {k2 ↔ k2} and D = ∅. So in the sequel we
will use configurations of the form Π . N, where Π is a network representation, and N
satisfies the obvious consistency constraints with respect to it.

We now define a labelled transition system for DπF, which consists of a collection
of actions over configurations, C

µ
−→ D, defined by the transition rules in Figures 6, 7

and 8, where µ can take one of the forms: -

– τ (internal action)
– (ñ : T̃)l : a?(V) (bound input)
– (ñ : T̃)l : a!〈V〉 (bound output)
– kill(l) (external location killing)
– l= k (external breaking of the link between locations l and k by an observer)

The definitions of these actions are modelled on those in [9, 8], and in this extended
abstract we refrain form commenting on them. Many are inherited directly from the
reductions semantics, although the side-conditions now apply to network representa-
tions in general. We only highlight the fact that the transition rules introducing external
actions such as (l-out), (l-in) for external output and input, and (l-halt), (l-disc) for ex-
ternal killing of nodes and breaking of links, are subject to judgements of the form
Π `obs l : alive requiring that l is alive and accessible by the observer.

Assuming Π ` l : alive

(l-out)

Π . l[[a!〈V〉.P]]
l:a!〈V〉
−−−−→ Π . l[[P]]

Π `obs l : alive

(l-in)

Π . l[[a?(X).P]]
l:a?(V)
−−−−→ Π . l[[P{V/X}]]

Π `obs l : alive,V

(l-in-rep)

Π . l[[∗a?(X).P]]
τ
−→ Π . l[[a?(X).(P| ∗ a?(Y).P{Y/X})]]

(l-eq)

Π . l[[(n = n).PdQe]]
τ
−→ Π . l[[P]]

(l-neq)

Π . l[[(n = m).PdQe]]
τ
−→ Π . l[[Q]]

n , m

(l-fork)

Π . l[[P|Q]]
τ
−→ Π . l[[P]] | l[[Q]]

Fig. 6. Local Operational Rules(1) for Dπ f

Assuming Π ` l : alive

(l-kill)

Π . l[[kill]]
τ
−→ (Π − l) . l[[0]]

(l-brk)

Π . l[[break k]]
τ
−→ Π − (l↔ k) . l[[0]]

Π ` l↔ k

(l-halt)

Π . N
kill(l)
−−−→ (Π − l) . N

Π `obs l : alive
(l-disc)

Π . N
l=k
−→ Π − (l↔ k) . N

Π `obs l↔ k

(l-new)

Π . l[[(νn : U)P]]
τ
−→ Π . (νn : T)l[[P]]

T = inst(U, l, Π)

(l-move)

Π . l[[mv k(P)dQe]]
τ
−→ Π . k[[P]]

Π ` k : alive, l↔ k

(l-nmove)

Π . l[[mv k(P)dQe]]
τ
−→ Π . l[[Q]]

Π 0 k : alive, l↔ k

Fig. 7. Network Operational Rules(2) for DπF

With these actions we can now define in the standard manner a bisimulation equiv-
alence between configurations, which can be used as the basis for contextual reasoning.

(l-open)

Π + n : T . N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Π ′ . N′

Π . (νn : T)N
(ñ:T̃,n:T)l:a!〈V〉
−−−−−−−−−−→ Π ′ . N′

l, a , n ∈ V

(l-weak)

Π + n : T . N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Π ′ . N′

Π . N
(ñ:T̃,n:T)l:a?(V)
−−−−−−−−−−→ Π ′ . N′

l, a , n ∈ V, Π `obs ñ : T̃, n : T

(l-rest)

Π + n : T . N
µ
−→ Π ′ + n : U . N′

Π . (νn : T)N
µ
−→ Π ′ . (νn : U)N′

n < fn(µ)

(l-rest-typ)

Π + k : T . N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ (Π + ñ : Ũ) + k : U . N′

Π . (νk : T)N
(ñ:Ũ)l:a!〈V〉
−−−−−−−−→ Π + ñ : Ũ . (νk : U)N′

l, a , k ∈ n(T̃)

(l-par-ctxt)

Π . N
µ
−→ Π ′ . N′

Π . N |M
µ
−→ Π ′ . N′|M

Π . M|N
µ
−→ Π ′ . M|N′

Π ` M

(l-par-comm)

↑ (Π) . N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Π ′ . N′ ↑ (Π) . M

(ñ:Ũ)l:a?(V)
−−−−−−−−→ Π ′′ . M′

Π . N|M
τ
−→ Π . (νñ : T̃)(N′|M′)

Π . M|N
τ
−→ Π . (νñ : T̃)(M′|N′)

Fig. 8. Contextual Operational Rules(3) for DπF

Let us write
Π |= M ≈int N

to mean that there is a (weak) bisimulation between the configurations Π .M and Π .N

Example 3. Consider the (simple) network:

d

d

d-�

�����1

�����)

PPPPPi

PPPPPq

l

k2

k1

formally represented as Π = 〈N ;S;S;D〉, where N = {l, k1, k2, serv, ans}, S = {l ↔
l, k1 ↔ k1, k2 ↔ k2, l ↔ k1, l ↔ k2, k1 ↔ k2} and S = D = ∅ . Running on Π

we consider two systems that implement two variants of a simple remote client server
accepting a request on serv at l, querying remote data at k1 and returning an answer
on ans at l. We use mv l(P) mv l, k(P) as shorthand for mv l(P)d0e and mv l(mv k(P))
respectively.

Crcs ⇐ Π . l[[serv!〈a〉]]
| (νdata)(l[[serv?(x).mv k1(data!〈x〉)]]
| k1[[data?(x).mv l(ans!〈 f (x)〉)]])

Drcs ⇐ Π . l[[serv!〈a〉]]
| (νdata)(l[[serv?(x).mv k1(data!〈x〉)dmv k2, k1(data!〈x〉)e]]
| k1[[data?(x).mv l(ans!〈 f (x)〉)dmv k2, l(ans!〈 f (x)〉)e]])

The main difference between the two implementations is that Drcs tries to access the
remote resource data using two paths while Crcs only tries the direct route from l to k1.
It is straightforward to argue that these systems are not bisimilar, when running relative
to Π ; formally

Π |= Crcs 6≈int Drcs

To see this, it is sufficient to examine the behaviour of the two configurations subsequent

to an action such as
l=k1
−→. However, in a calculus where link failure are not considered,

we would not be able to distinguish between these two implementations.

One can also use the lts to establish positive results. For example, over the same
network Π used in Example 3, one can establish

Π |= k2[[mv k1(mv l(ans!〈〉))]] ≈int k1[[mv k2(mv l(ans!〈〉))]]

However we can argue, at least informally, that this notion of equivalence is too
discriminating and the labels too intentional, in that we distinguish between systems
running on a network, where the differences in behaviour are difficult to observe. Prob-
lems arise when there is an interplay between hidden nodes, links and dead nodes.

Example 4. LetΠ be the (simple) configuration in which there is only one node l which
is alive, and consider the two systems

M ⇐ (νk1 : {l})(νk2 : {k1})(νk3 : {k1, k2})l[[a!〈k2, k3〉.P]]
N ⇐ (νk1 : {l})(νk2 : {k1})(νk3 : {k1})l[[a!〈k2, k3〉.P]]

Note that when M and N are running on Π , because of the new locations declared, the
code l[[a!〈k2, k3〉.P]] is effectively running on the following networks respectively:

d d

d

d

-�
���*

����

HHHj
HHHY

6

?

l νk1

νk3

νk2

d d

d

d

-�
���*

����

HHHj
HHHY

l νk1

νk3

νk2

It turns out that
Π |= M 6≈int N

because the configurations give rise to different output actions, on a at l. The difference
lies in the types at which the locations k2 and k3 are exported; in Π . M the output
label is µ1 = (k2 : ∅, k3 : {k2})l : a!〈k2, k3〉 while with Π . N it is µ2 = (k2 : ∅, k3 :
∅)l : a!〈k2, k3〉. We note that the derivation of both these actions require applications of
the tricky rule (l-rest-typ); as an illustration we here give the last derivation step for the
transition of configuration Π . M.

. . .

(Π + k1 : {l}) . M′
µ3
−→ ((Π + k2 : ∅) + k3 : {k2}) + k1 : {l, k2, k3} . l[[P]]

Π . (νk1 : {l})M′
µ1
−→ ((Π + k2 : ∅) + k3 : {k2}) . (νk1 : {l, k2, k3})l[[P]]

(l-rest-typ)

where M′ = (νk2 : {k1})(νk3 : {k1, k2})l[[a!〈k2, k3〉.P]] and µ3 = (k2 : {l}, k3 : {l, k2})l :
a!〈k2, k3〉

However if k1 does not occur in P, then k1 can never be scope extruded to the
observer and thus k2 and k3 will remain inaccessible in both systems. This means that
the presence (or absence) of the link k2 ↔ k3 can never be checked and thus there
should be no observable difference between M and N running on Π .

Example 5. We consider the following three configuration definitions together with the
representation of their respective networks

E1 ⇐ 〈{l, a}; {l1 ↔ l1}; ∅; ∅〉 . (νk : 〈d, {l}〉)l[[a!〈k〉.P]]

d t� -
l νk

E2 ⇐ 〈{l, a}; {l1 ↔ l1}; ∅; ∅〉 . (νk : 〈d, ∅〉)l[[a!〈k〉.P]]

d t
l νk

E3 = 〈{l, a}; {l1 ↔ l1}; ∅; ∅〉 . (νk : 〈a, ∅〉)l[[a!〈k〉.P]]

d d
l νk

Intuitively no observer can distinguish between these three configurations; even though
some observer might obtain the scoped name k by inputting on channel a@l, it cannot
determine the difference in the state of network. From rule (l-nmove) we conclude that
any attempt to move to k from l will fail. However, such a failure does not yield the
observer enough information about whether it was caused by a node fault at k, a link
fault between l and k or both. As a result, we would like to equate all three configuration.
However, our lts specifies that all three configurations perform the output with different
scope extrusion labels, namely

E1
(k:〈d,{l}〉)l:a!〈k〉
−−−−−−−−−−−→ 〈{l, a}; {l1 ↔ l1}; ∅; {k ↔ k, k ↔ l}〉 . l[[P]]

E2
(k:〈d,∅〉)l:a!〈k〉
−−−−−−−−−−→ 〈{l, a}; {l1 ↔ l1}; ∅; {k ↔ k}〉 . l[[P]]

E3
(k:〈a,∅〉)l:a!〈k〉
−−−−−−−−−−→ 〈{l, a}; {l1 ↔ l1}; {k ↔ k}; ∅〉 . l[[P]]

4 Reduction barbed congruence

The essential problem with the lts of the previous section is that when new locations
are created, the associated information, coded in the types at which they are exported,
is too detailed. Intuitively a network representation Π = 〈N ;S;S;D〉 involves both
externally visible or accessible information, N and S, and internal information, S and
D; the latter may only be used by the system itself. The main problem with the current
actions is that they carry too much internal information. We need a revised form of
actions, which carry just the right amount of information.

But before we plunge into our revision, it is best to have yardstick with respect
to which we can calibrate the appropriateness of the revised labelled actions, and the
resulting bisimulation equivalence. We adapt a well-known formulation of contextual
equivalence to DπF, [11, 9], called reduction barbed congruence. This relies on the
notion of a barb, a collection of primitive observations which can be made on systems.
Let us write Π .N ⇓a@l to mean that an output on channel a at the live location l can be
observed. Then we would expect all reasonable behavioural equivalencies to preserve
these barbs.

But the key idea in the definition is to use a notion of contextual relation over config-
urations, in which the contexts only have access to the observable part of the network.

Definition 4. A relation R over configurations is contextual if

– Π . M R Π ′ . N and Π, Π ′ `obs O implies Π . M|O R Π ′ . N|O and
Π . O|M R Π ′ . O|N

– (Π + n : T) . M R (Π ′ + n : U) . N implies Π . (νn : T)M R Π ′ . (νn : U)N
– Π . M R Π ′ . N and Π, Π ′ `obs T implies (Π + n : T) . M R (Π ′ + n : T) . N,

whenever n is fresh.

In this first clause the constraints, Π `obs O and Π ′ `obs O ensure that only observers
with access to the external components of the networks are used. Note also that the third
clause ensures that the behaviour of M and N are also examined when they are placed
in larger networks.

Definition 5 (Reduction barbed congruence). Let � be the largest relation between
configurations which is contextual, preserves barbs and is reduction-closed.

Note that apriori this definition allows us to compare configurations which have differ-
ent networks. However it turns out that whenever Π . M � Π ′ . N, the external parts of
Π andΠ ′ must coincide. In the sequel we will abbreviateΠ.M � Π.N toΠ |= M � N.

We now outline a revision of our labelled actions with the property that the resulting
bisimulation equivalence coincides with this yardstick relation �. The idea is to reuse
the same actions but to simply change the types at which bound names appear. Currently
these are of the form T = ch or 〈A, {k1, . . . kn}〉, where the latter indicates the liveness
of a location and the nodes ki to which it is linked. We change these types to new types
of the form S,R = {l1 ↔ k1, . . . , li ↔ ki} where S is a semi-reflexive linkset. Intuitively,
S represent the new live nodes, refLoc(S), which are made accessible to observers by
the extrusion of the new location together with links between these nodes and nodes

(l-deriv-1)

Π . N
µ
−→ Π ′ . N′

Π . N
µ
7−→ Π ′ . N′

µ ∈ {τ, kill(l), l= k}

(l-deriv-2)

Π . N
(ñ:T̃)l:a!〈V〉
−−−−−−−−→ Π ′ . N′

Π . N
(ñ:S̃)l:a!〈V〉
7−→ Π ′ . N′

S̃ = netType(n, T̃, Π)

(l-deriv-3)

Π . N
(ñ:T̃)l:a?(V)
−−−−−−−−→ Π ′ . N′

Π . N
(ñ:S̃)l:a?(V)
7−→ Π ′ . N′

S̃ = netType(n, T̃, Π)

Fig. 9. The derived lts

which were already observable; alternatively, S is the information which is added to the
external part of the network representation as a result of the action.

The formal definition is given in Figure 9, which is expressed in terms of a function
netType(n,T, Π). If n is a channel (T = ch) or a dead location (T = 〈d,L〉), this returns
the empty link set ∅. Otherwise, when it is a live location (T = 〈a,L〉), it constructs
the linkset denoting the nodes and links that are made accessible by the addition of the
new location n : 〈a,L〉 to the network Π . In this extended abstract we omit the formal
definition of netType(n,T, Π) due to lack of space.

These revised actions give rise to a new bisimulation equivalence over configura-
tions, ≈, and we use

Π |= M ≈ N

to mean that the configurations Π . M and Π . N are bisimilar.

Example 6. Here we re-examine the systems in Example 4 and Example 5. We recall
that in Example 4 we had the following actions with respect to the original lts: -

Π . M
µ1
−→ ((Π + k2 : ∅) + k3 : {k2}) . (νk1 : {l, k2, k3})l[[P]]

Π . N
µ2
−→ ((Π + k2 : ∅) + k3 : ∅) . (νk1 : {l, k2, k3})l[[P]]

But Π contains only one accessible node l; extending it with the new node k2, linked to
nothing does not increase the set of accessible nodes. Further increasing it with a new
node k3, linked to the inaccessible k2 (in the case of Π .M) or completely disconnected
(in the case ofΠ.N), also leads to no increase in the accessible nodes. Correspondingly,
the calculations of netType(k2, ∅, Π) and netType(k3, {k2}, (Π + k2 : ∅)) both lead to the
empty link set. Formally we get the same derived actions

Π . M
α
7−→ ((Π + k2 : ∅) + k3 : {k2}) . (νk1 : {l, k2, k3})l[[P]]

Π . N
α
7−→ ((Π + k2 : ∅) + k3 : ∅) . (νk1 : {l, k2, k3})l[[P]]

where α is (k2 : ∅, k3 : ∅)l : a!〈k2, k3〉. Furthermore if P contains no occurrence of k1,
we can go on to show

Π |= M ≈ N

On the other hand, if P is a!〈k1〉, the subsequent transitions are:-

((Π + k2 : ∅) + k3 : {k2}) . (νk1 : {l, k2, k3})l[[P]]
β1
7−→ . . .

((Π + k2 : ∅) + k3 : ∅) . (νk1 : {l, k2, k3})l[[P]]
β2
7−→ . . .

where β1 is (k1 : S)l : a!〈k1〉 and β2 is (k1 : R)l : a!〈k1〉 where S/R = {k2 ↔ k3}. More
specifically, S and R hold information directly related to k1 such as k1 ↔ k1, k1 ↔ l, . . .
together with information related to other newly accessible nodes such as k2 ↔ k2, k2 ↔

k3, The derived action β1 exports an extra link k2 ↔ k3 in S and based on this
discrepancy between β1 and β2 we are allowed to discriminate M and N, and thus

Π |= M 6≈ N

Revisiting Example 5, the three different actions of E1, E2 and E3 now converge to
the same action Ei

α
7−→ l[[P]] where α is the label (k : ∅)l : a!〈k〉.

The main result of this paper can now be stated:

Theorem 1. In DπF, Π |= M ≈ N if and only if Π |= M � N

Proof. (Outline) In one direction, this involves showing that ≈ as a relation over con-
figurations satisfies the defining properties of reduction barbed congruence. The main
problem here is to show that it is contextual, and in particular that Π |= M ≈ N implies
Π |= M|O ≈ N|O for every O which only has access to the external (accessible) part
of Π . This in turn involves developing Decomposition and Composition theorems for
derived actions from configurations of the form Π . M|O. The overall structure of the
proof is similar to the corresponding result in [8], Proposition 12, but the details are
more complicated because of the presence of the network.

The essential part of the converse is to show that for every derived action, relative
to a network Π , there is an observer which only uses the external knowledge of Π
which completely characterises the effect of that action. These observers have already
been constructed for simpler languages such as π-calculus, in [9], and Dπ, in [8]. Here
the novelty is to be able to characterise the observable effect that actions have on a
network. But it turns out that for every Π we can define an observer OΠ which when
run on an arbitrary network Π ′ can determine whether the external or accessible part of
Π ′ coincides with that of Π .

5 Related Work and Conclusions

We have presented a simple extension of Dπ, in which there is an explicit represen-
tation of the underlying network on which processes execute; moreover the network
can exhibit both node and link failures. Our main result is a fully-abstract bisimulation
equivalence with which we can reason about the behaviour of processes in the presence
of dynamic network failures. To the best of our knowledge this is the first time system
behaviour in the presence of link failure has ever been investigated.

Our starting point was the work by Hennessy and Riely [15] on bisimulation tech-
niques for a distributed variant of CCS with location failure. We adapted this work to
Dπ and defined a reduction semantics to describe the behaviour of systems in the pres-
ence of node and link failures. We then applied techniques of actions dependent on the
observer’s knowledge, developed for the π-calculusin [9] and Dπ in [8], to characterise
a natural notion of barbed congruence.

There has been a number of studies on process behaviour in the presence of perma-
nent node failure only, in addition to the already cited [15]. That closest to our work is
presented in [3, 2]. They use a located version of the π-calculus, called π1l in which pro-
cesses are located at explicit sites, which are subject to failure. However processes can
not dynamically extend the set of nodes, but more generally π1l is not location-aware;
in the absence of node failure locations have no impact on computations. Moreover
their approach to developing reasoning tools is also quite different from ours. Rather
than develop, justify and use bisimulations in the language of interest, π1l, they pro-
pose a translation into a version of the π-calculus without locations, and use reasoning
tools on the translations. But they do show that for certain π1l terms it is sufficient to
reason on their translations. Elsewhere, permanent location failure with hierarchical de-
pendencies have been studied by Fournet, Gonthier, Levy and Remy in [7]. Berger [4]
studied a π-calculus extension that models transient location failure with persistent code
and communication failures, while Nestmann, Merro and Fuzzatti [14] employ a tailor
made process calculus to express standard results in distributed systems, such as [6].

References

1. Java RMI reference ”Java Remote Method Invocation - Distributed Computing for Java”
(White Paper), May 1999.

2. Roberto M. Amadio. An asynchronous model of locality, failure, and process mobility. In
D. Garlan and D. Le Métayer, editors, Proceedings of the 2nd International Conference on
Coordination Languages and Models (COORDINATION’97), volume 1282, pages 374–391,
Berlin, Germany, 1997. Springer-Verlag.

3. Roberto M. Amadio and Sanjiva Prasad. Localities and failures. FSTTCS: Foundations of
Software Technology and Theoretical Computer Science, 14, 1994.

4. Martin Berger. Basic theory of reduction congruence for two timed asynchronous π-calculi.
In Proc. CONCUR’04, 2004.

5. Luca Cardelli. Wide area computation. In Proceedings of 26th ICALP, Lecture Notes in
Computer Science, pages 10–24. Springer-Verlag, 1999.

6. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

7. Cedric Fournet, Georges Gonthier, Jean Jaques Levy, and Remy Didier. A calculus of mobile
agents. CONCUR 96, LNCS 1119:406–421, August 1996.

8. Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of
access and mobility control in distributed systems. Theoretical Computer Science, 322:615–
669, 2004.

9. Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the
presence of subtyping. Mathematical Structures in Computer Science, 14:651–684, 2004.

10. Matthew Hennessy and James Riely. Resource access control in systems of mobile agents.
Information and Computation, 173:82–120, 2002.

11. K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer
Science, 152(2):437–486, 1995.

12. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
13. Martin W. Murhammer, Orcun Atakan, Stefan Bretz, Larry R. Pugh, Kazunari Suzuki, and

David H. Wood. TCP/IP Tutorial and Technical Overview. IBM Redbooks. International
Technical Support Organization, 6 edition, October 1998.

14. Nestmann, Fuzzati, and Merro. Modeling consensus in a process calculus. In CONCUR:
14th International Conference on Concurrency Theory. LNCS, Springer-Verlag, 2003.

15. James Riely and Matthew Hennessy. Distributed processes and location failures. Theoretical
Computer Science, 226:693–735, 2001.

