
MIKADO Global Computing Project
IST-2001-32222

Virtual Machine Technologies:
Core Software Framework v2

MIKADO Deliverable D3.1.3

Editor : R. DE NICOLA (U. OF FLORENCE)

Authors : L. BETTINI , R. DE NICOLA (U. OF FLORENCE),
M. L ACOSTE (FTR&D), M. LORETI (U. OF FLORENCE)

Classification: Public
Deliverable no.: D3.1.3
Reference: RR/WP3/3
Date : February 2005

c© INRIA, France Telecom R&D, U. of Florence, U. of Sussex, U. of Lisbon

Project funded by the European Community under the
“Information Society Technologies” Programme (1998–
2002)

Abstract

This document discusses the progress in the implementationof the MIKADO Core Software Frame-
work, that we call IMC (Implementing Mobile Calculi). The framework has been developed to build
run-time support for languages oriented aiming at programming global computing applications. It en-
ables platform designers to customize communication protocols and network architectures and guaran-
tees transparency of name management and code mobility in distributed environments. A first version of
the IMC framework was delivered last year [BFN+04]. The version described here has been completely
re-designed and implemented with the aims of guaranteeing better usability and additional features. The
actual changes have been prompted by the actual use of the framework by two units of the project. The
IMC framework has been used to re-engineer the KLAVA package (the runtime support for KLAIM)
and to implement two variants ofDπ, one of the reference calculi for the mikado domain based model.
Investigation have started to consider the embedding the concept of membrane within IMC that have
lead to guidelines that will be used for further implementations. The framework presented here will be
released as open source software. The actual code of the different IMC components can be inspected at
the following address:http://music.dsi.unifi.it/software/

Contents

1 Introduction 2

2 Overview of the IMC Framework 4
2.1 Communication Protocols .. 4
2.2 Code Mobility .. 6
2.3 Node Topology 7
2.4 Naming and Binding .. 8

3 Some Examples 10

4 Conclusions 11

1 Introduction

Technological advances of both computers and telecommunication networks, and development of more ef-
ficient communication protocols are leading to an ever increasing integration of computing systems and to
diffusion of so called Global Computers [Car99]. This is a massive networked and dynamically reconfig-
urable infrastructure interconnecting heterogeneous, typically autonomous and mobile components, that can
operate on the basis of incomplete information.

Global Computers are fostering a new style of distributed programming that has to take into account
variable guarantees for communication, cooperation and mobility, resourceusage, security policies and
mechanisms. This has stimulated the proposal of new theories, computational paradigms, linguistic mech-
anisms and implementation techniques for the design, realization, deployment and management of global
computational environments and their applications.

We have thus witnessed the birth of many calculi and kernel languages intended to support programming
according to the new style and to provide tools for formal reasoning over the modelled systems. We have
also seen that, to assess the impact and quality of the proposals, many implementations of these formalisms
have been proposed. Very often, the language used for implementation is Java [AGH00]. Indeed, Java
provides many useful features for building network applications with mobile code: object serialization, to
encode/decode object structure into/from a stream;dynamic class loading, to insert a new class dynamically
into a running application, a widenetwork class libraryand language-basedsynchronizationfunctionalities.

Indeed, Java [AGH00] provides many useful features that are helpful in building general network ap-
plications and in particular with network applications mobile code:object serialization, to encode/decode
object structure into/from a stream;dynamic class loading, to insert a new class dynamically into a running
application, a wide network class library and language based synchronization functionalities.

However, these above mentioned Java mechanisms still require a big programming effort, and so they
can be thought of as “low-level” mechanisms. Because of this, many existingJava-based distributed systems
(see, e.g., [LO98, ARS97, PS97, CLZ98, BDFP98, PMR99] and the references therein) tend to re-implement
from scratch many components that are typical and recurrent in distributed and mobile applications.

To support the implementation of languages for global computing, we have been working on a generic
framework called IMC (Implementing Mobile Calculi) that can be used as a kind of middleware for the
implementation of different distributed mobile systems. Such a framework aims at being as general as pos-
sible and at providing the necessary tools for implementing new language run-time systems directly derived
from calculi for mobility. The basic idea and motivation of this framework is thatthe implementer of a new
language would need concentrating on the parts that are really specific ofhis system, while relying on the
framework for the recurrent standard mechanisms. The development ofprototype implementations should
then be quicker and the programmers should be relieved from dealing with low-level details. The proposed
framework aims at providing all the required functionalities and abstractionsfor arbitrary components to
communicate and move in a distributed setting.

After analysis of different kernel languages for mobility, we singled outfour components described
below as a foundation for IMC:

Communication Protocols provides abstractions and reference implementations to build customized com-
munication protocols.

Code Mobility provides the basic functionalities for making code mobility transparent to the programmer.
It deals with object marshalling, code migration, and dynamic loading of code.

Node Topology manages the topological structure of the network and its components. It deals with prim-
itives for connection and disconnection, node creation and deletion and node-based decentralized
topology.

2

Naming and Binding defines a uniform way to designate and interconnect the set of objects involved in
the communication paths between computational nodes. It deals with primitives for name creation
and deletion, typing and policies for name resolution.

IMC already provides concrete implementations for the standard and most used functionalities that
should fit most Java mobile framework requirements (e.g., Java byte-code mobility and standard network
communication mechanisms). The user of the IMC package can then customize parts of the framework
by providing its own implementations for the interfaces used in the package. Inthis respect, the IMC
framework will be straightforward to use if there is no need of specific advanced features. Nevertheless, the
framework is open to customizations if these are required by the specific mobility system one is willing to
implement. Customization of the framework can be achieved seamlessly thanks to design patterns such as
factory method, abstract factory, template methodandstrategy[GHJV95] that are widely used throughout
the package.

The framework was designed to achieve bothtransparencyandadaptability. For instance, concerning
code mobility, the framework provides all the basic functionalities for making code mobility transparent to
the programmer: all issues related to code marshalling and code dispatch arehandled automatically by the
classes of the framework. Its components are designed to deal with objectmarshalling, code migration, and
dynamic loading of code. The framework can also be adapted to deal with many network topologies (flat,
hierarchical, peer-to-peer networks, etc.) and with message dispatchingand forwarding. Furthermore, the
implementer can build his own communication protocols by specializing the protocolbase classes provided
by the framework. Thus, the developer will only have to implement the parts that are relevant to the system
he wants to build: typically, he will develop the communication protocol which best matches application-
specific requirements. Connections and network topology are dealt with directly from within the framework.
However, the developer can access the current state of its application atany time by using listeners to events
that the classes of the framework generate.

The main intent of the IMC framework is not to be “yet another” distributed mobile system. It should
rather be seen at a meta-level, as a framework/toolbox for building “yet another” distributed mobile system.
A first version of the IMC framework was delivered last year [BFN+04]. The version described here has
been completely re-designed and implemented with the aims of guaranteeing betterusability and additional
features. The actual changes have been prompted by the actual use ofthe framework by two units of the
project. Indeed, we have used the IMC framework to re-engineer the KLAVA package (the runtime support
for KLAIM) and to implement two variants ofDπ, one of the reference calculi for the mikado domain based
model.

In the rest of this document we shall describe the different components of the revised IMC and shall
present a couple of small examples aiming at showing the flexibility and potentialityof the described frame-
work.

The framework presented here will be released as open source software.The actual code of the different
components can be inspected at the following address:http://music.dsi.unifi.it/software/

3

2 Overview of the IMC Framework

In this section we sketch the main parts of the framework, their interfaces andfunctionalities. For the sake
of simplicity we will not detail all the method signatures, e.g., we will not show the exceptions.

2.1 Communication Protocols

When implementing a distributed system, one of the system-specific issues is the choice of the com-
munication protocol, which may range from high-level protocols such as Java RMI, well integrated
with the Java Virtual Machine environment and taking advantage of the architectural independence pro-
vided by Java, to protocols closer to hardware resources such as TCP/IP. Marshalling strategies may
range from dedicated byte-code structures to Java serialization. A generic communication framework
[HHD98, Exo02, OKS+00, KSO02, DHDS98] should strive to be minimal, and allow to introduce sup-
port for new protocols with little effort, without need to re-implement a new communications library.

Thus, IMC provides tools to define customized protocol stacks, which areviewed as a flexible compo-
sition of micro-protocols. The IMC design, inspired from thex-kernel [HP91] communication framework,
allows to definebindingswith various semantics, and to combine them in flexible ways. In other words, with
simple architectural principles such as separating marshalling from protocol implementation, IMC allows to
create adaptable access and communication paths between components of a distributed system with a wide
variety of semantics: mobile, persistent, with QoS guarantees, etc. Thus, IMC enables to achieve adaptable
forms of communication transparency, which are needed when implementing aninfrastructure for global
computing.

In the IMC framework, anetwork protocollike, e.g., TCP, UDP, or GIOP is viewed as an aggregation
of protocol states: a high-level communication protocol can indeed be described as a state automaton. The
programmer implements a protocol state by extending theProtocolState abstract class and by providing
the implementation for the methodenter, which returns the identifier of the next state to execute. The
Protocol class aggregates the protocol states and provides thetemplate method[GHJV95]start that will
execute each state at a time, starting from the first protocol state up to the finalone. Thus, the programmer
must simply provide the implementation of each state, put them in the correct order in a protocol instance,
and then start the protocol.

public classProtocol{
public void start(){ /∗ executes the states∗/ }
}

public abstract classProtocolState{
public abstract String enter();
}

The protocol states abstract from the specific communication layer. This enables re-using of a proto-
col implementation independently from the underlying communication means: the same protocol can then
be executed on a TCP socket, on UDP packets or even on streams attachedto a file (e.g., to simulate a
protocol execution). This abstraction is implemented by specialized streams:Marshaller (to write) and
UnMarshaller (to read). These streams provide high-level and encoding-independent representations of
messages that are about to be sent or received, i.e., they are basically an extension of standardDataOutput
andDataInput Java streams, with the addition of means to send and receive migrating code (explained
later) and serialize and deserialize objects. The interface ofUnMarshaller is the following (the interface of
Marshaller contains the corresponding write instead of read methods):

public interface UnMarshallerextendsDataInput, Closeable, MigratingCodeHandler{
public Object readReference();
public MigratingCode readMigratingCode();
public MigratingPacket readMigratingPacket();
}

4

State a

State dState c

State b

State e

remove
header

add
header

Layer z

remove
header

add
header

Layer y

remove
header

add
header

Layer x

P
r
o
t
o
c
o
l

S
t
a
c
k

Figure 1: Protocol States and Protocol Stack Abstractions.

The data in these streams can be “pre-processed” by some customizedprotocol layersthat can remove
some information from the input and can add some information to the output: typically this information are
protocol specific headers removed from the input and added to the output. A protocol layer is an abstract
representation of a communication channel which uses a given protocol. It lets messages be sent and re-
ceived through the communication channel it stands for using that protocol. The base classProtocolLayer
deals with these functionalities, and can be specialized by the programmer to provide his own protocol
layer. These layers are then composed into aProtocolStack object that ensures the order of preprocessing
passing through all the layers in the stack. The structure of a protocol instance can then be depicted as in
Figure 1.

For instance, the programmer can add a layer that removes a sequence number from an incoming packet
and adds the incremented sequence number into an outgoing packet. The framework also provides function-
alities to easily implementtunnels, so that it can be possible, e.g., to implement a tunneling layer to tunnel
an existing protocol into HTTP (see Section 3).

Before reading something from a stack, a protocol state must obtain anUnMarshaller instance from
the stack by calling the methodup: this allows the stack layers to retrieve their own headers. In the same
way, before starting to write information to the network, the state must obtain aMarshaller instance from
the stack by calling the methodprepare, so that the stack layers can add their own headers into the output.
When the state has finished to write, it must notify the stack by calling the methoddown, passing the
marshaller instance it had used to write the information, in order to flush the output buffer.

The methodsup, prepare anddown are declaredpublic andfinal in the base classProtocolLayer: the
subclasses should instead provide their own implementations for these functionalities in the methodsdoUp,
doPrepare anddoDown, respectively. The public methods in the base class will ensure that the methods
implemented in the derived classes will be called in the right order so to implement thestack of layers.

public classProtocolLayer{
public final UnMarshaller up(){ /∗ implementation of the framework∗/ }
protectedUnMarshaller doUp(UnMarshaller um){ /∗ implementation of the programmer∗/ }
public final Marshaller prepare(){ /∗ implementation of the framework∗/ }

5

protectedMarshaller doPrepare(Marshaller m){ /∗ implementation of the programmer∗/ }
/∗ similar for down()∗/
}

TheUnMarshaller returned by the lower layer in the stack is passed to the implementation methoddoUp;
thus, a layer can use the passedUnMarshaller to retrieve its own header and pass theUnMarshaller to
the next layer, or it can create a newUnMarshaller to pass to the next layer. The latter scenario is typical
of tunneling layers (as briefly shown in Section 3). Similarly, theMarshaller returned by the lower layer
is passed todoPrepare. Typically, the firstUnMarshaller andMarshaller objects will be created by the
lowest layer, e.g., in case of a TCP socket, it will be a stream attached to the socket itself, while, in case of
UDP packets, it will be a buffered stream attached to the datagram contents. Low layers for TCP and UDP
are already provided by the framework.

2.2 Code Mobility

When code (e.g., a process or an object) is moved to a remote computer, its classes may be unknown at
the destination site. It might then be necessary to make such code available for execution at remote hosts;
this can be done basically in two different ways:automaticapproach, i.e., the classes needed by the moved
process are collected and delivered together with the process;on-demandapproach, i.e., the class needed
by the remote computer that received a process for execution is requested to the server that did send the
process. We follow the automatic approach because it complies better with the mobile agent paradigm:
when migrating, an agent takes with it all the information that it may need for laterexecutions. This makes
the code migration completely transparent to the programmer, so that he will nothave to worry about classes
movement. Our choice has also the advantage of simplifying the handling ofdisconnected operations(the
agent can execute even if the owner is not connected) [PR98]. This maynot be possible with the on-demand
approach: the server that sent the process must always be on-line in order to provide the classes needed by
remote hosts. The framework also provides means to support a fully on-demand approach.

With the automatic approach, an object will be sent along with the byte-code ofits class, and with the
byte-code of all the classes of the objects it uses (i.e., all the byte-code it needs for execution). Obviously,
only the code of user-defined classes must be sent, as other code (e.g.,Java class libraries and the classes
of the IMC packages) must be common to every application. This guaranteesthat classes belonging to
Java standard class libraries are not loaded from other sources (especially, the network); this would be very
dangerous, since, in general, such classes have many more access privileges with respect to other classes.
The framework also allows the programmer to manually exclude other classes (or entire packages) from
mobility.

The framework defines the empty interfaceMigratingCode that must be implemented by the classes
representing a code that has to be exchanged among distributed sites. Thiscode is intended to be transmitted
in aMigratingPacket, stored in the shape of abyte array. How aMigratingCode object is stored in and
retrieved from aMigratingPacket is taken care of by the these two interfaces:

public interface MigratingCodeMarshaller{
public MigratingPacket marshal(MigratingCode code);
}

public interface MigratingCodeUnMarshaller{
public MigratingCode unmarshal(MigratingPacket p);
}

Starting from these interfaces, the framework provides concrete classes that automatically deal with
migration of Java objects together with their byte-code, and for transparentlydeserializing such objects
by dynamically loading their transmitted byte-code. In particular, the framework provides the base class
JavaMigratingCode, implementing the above mentioned interface,MigratingCode, that provides all the
procedures for collecting the Java classes that the migrating object has to bring to the remote site:

6

public classJavaMigratingCodeextendsThreadimplementsMigratingCode{
public JavaMigratingPacket makepacket(){...}
}

The methodmake_packet will be used directly by the other classes of the framework or, possibly, directly
by the programmer, to build a packet containing the serialized (marshalled) version of the object that has
to migrate together with all its needed byte-code. Thus, this method will actually take care of all the code
collection operations. The names of user defined classes can be retrieved by means of class introspection
(Java Reflection API). Just before dispatching a process to a remote site, a recursive procedure is called for
collecting all classes that are used by the process when declaring: data members, objects returned by or
passed to a method/constructor, exceptions thrown by methods, inner classes, the interfaces implemented
by its class, the base class of its class. Once these class names are collected, their byte code is gathered and
packed along with the object in aJavaMigratingPacket object (a subclass ofMigratingPacket storing
the byte-code of all the classes used by the migrating object, besides the serialized object itself).

Finally, two classes, implementing the above mentioned interfacesMigratingCodeMarshaller
and MigratingCodeUnMarshaller, will take care of actually marshalling and unmarshalling aJava-
MigratingPacket containing a migrating object and its code:

public classJavaByteCodeMarshallerimplementsMigratingCodeMarshaller{...}
public classJavaByteCodeUnMarshallerimplementsMigratingCodeUnMarshaller{...}

In particular, the first one will basically rely on the methodmake_packet of JavaMigratingCode, while
the second one will rely on a customizedclass loaderprovided by the framework (aNodeClassLoader) to
load the classes stored in theJavaMigratingPacket and then on Java serialization to actually deserialize
the migrating code contained in the packet.

The readMigratingCode method of theUnMarshaller, shown in Section 2.1, will rely on an a
MigratingCodeUnMarshaller to retrieve a migrating object and the corresponding method inMarshaller
will rely on a MigratingCodeMarshaller to send a migrating object, so that all the code mobility issues
will be dealt with internally by the framework. Even in this case, the programmercan provide his own im-
plementations ofMigratingCodeUnMarshaller andMigratingCodeMarshaller so that the framework
will transparently adapt to the customized code mobility.

2.3 Node Topology

The framework already provides some implemented protocols to deal with connections and disconnections
(these protocols can be specialized or overridden by the programmer). With this respect, the concept of con-
nection is logical, since it can then rely on a physical connection (e.g., TCP sockets) or on a connectionless
communication layer (e.g., UDP packets). In the latter case, a keep-alive mechanism can be implemented.
A ConnectionManager instance will keep track of all the connections.

This can be used to implement several network topology structures: aflat network where only one server
manages connections and all the clients are at the same level; ahierarchicalnetwork where a client can be
in turn a server and where the structure of the network can be a tree or, ingeneral, an acyclic graph of nodes;
or, apeer-to-peernetwork.

A participant of a network is an instance of the classNode contained in the framework. A node is
also a container of running processes that should be thought of as the computational units. The framework
provides all the means for a process to access the resources containedin a node and to migrate to other
nodes. Thus, a developer of a distributed and mobile code system has all the means to start to implement its
own infrastructure or the run-time system for a mobile code language. A process is a subclass of the class
NodeProcess that implements theJavaMigratingCode base class (this allows to easily migrate a process
to a remote site), and can be added to a node for execution with the methodaddProcess of the classNode.

A NodeProcess has the following interface:

public abstract classNodeProcessextendsJavaMigratingCode{

7

public abstract void execute();
public final void run(){
// framework initialization operations; then call execute()

}
}

Thus, a node keeps track of all the processes that are currently in execution. A concurrent process is started
by calling start on theNodeProcess thread; the final implementation ofrun will initialize the process
structure (not detailed here) and then invokeexecutethat must be provided by the programmer.

A different kind of process, callednode coordinator, is allowed to execute privileged actions, such as
establishing a connection, accepting connections from other nodes, closing a connection, etc. Standard
processes are not given these privileges, and this allows to separate processes that deal with node configura-
tions from standard programs executing on nodes. For these processes a specialized class is provided called
NodeCoordinator.

The programmer can provide its implementation of the concept ofNodeLocation to address in a unique
way a node in the net (e.g., the standard IP address:port representation). If there is a (logical) connection
with a node, then a location is mapped by the connection manager into a protocolstack. Thus a process can
retrieve a stack to run its own protocols with a remote node.

The framework also provides means to dynamically “manipulate” a protocol: it permits extending a
protocol automaton by adding new states and extending the protocol stack by inserting new layers. With
respect to the manipulation of the protocol automaton, it is possible to add a newstarting state and a new
final state, so that the original protocol is embedded in an extended protocol. When a new start and a new
end state are added to an existing protocol, the framework will also take careof re-naming the previous start
and end state and update all the references to the original start and end state with the re-named version. This
will guarantee that the original protocol will transparently work as before internally, while from the outside,
the new start state will be executed before the original start state and the new end state will be executed after
the original end state.

The manipulation of a protocol is used internally by the classes of the framework, for instance in connec-
tion and disconnection management. TheNode class provides aconnect method to establish a connection
and a methodaccept to accept a connection (these connections are both logical and physical). These meth-
ods, apart from the connection details (e.g., host and port) also take a protocol instance. These methods will
take care of establishing (accepting, resp.) a physical connection, adda logical connect protocol state as the
new start state and a logical disconnect state as the end state to the passed protocol. They also take care of
setting the low layer in the protocol stack (e.g., TCP socket or UDP datagrams). Then, the protocol can be
started. This manipulation is depicted in Figure 2.

2.4 Naming and Binding

The framework also supports logical name management, inspired by the JONATHAN ORB [DHDS98]. The
aim of this part of the framework is to define a uniform manner to designate and interconnect the set of
objects involved in the communication paths between computational nodes.

In the IMC framework, anidentifier is a generic notion of name that uniquely designates an object in
a given naming context. Identifier semantics are naming context-specific: distributed, persistent, etc. A
naming contextprovides name creation and management facilities. It guarantees that eachof the names it
controls designates some object unambiguously. It generally maps a name to an object or entity designated
by that name, or can also map names to other contexts, if the resolution of namesneeds to be refined. Finally,
a binder is a a special kind of naming context that, for a given managed name, is able tocreate an access
path, also calledbinding, towards the object designated by that name.

These definitions offer a generic and uniform view of bindings, and clearly separate object identification
from object access:

8

State a

State b

State d

State c

START END

remove
header

add
header

Layer z

remove
header

add
header

Layer y

remove
header

add
header

Layer x

P
r
o
t
o
c
o
l

S
t
a
c
k

State a

State b

State d

State c

START1 END1

State Conn

START

State Discon

END

remove
header

add
header

Layer z

remove
header

add
header

Layer y

remove
header

add
header

Layer x

P
r
o
t
o
c
o
l

S
t
a
c
k

Layer TCP

Figure 2: The original protocol (left) and the new protocol extended witha new start and end state and the
TCP layer (right).

• In a given naming contextnc, a new name for an objecto is obtained by thenc.export(o) invocation.
Chains of identifiers can then be created by exporting that name to other naming contexts.

• The creation of an access path to objecto designated by identifierid is performed by theid.bind()
invocation which returns a ready-to-use surrogate to communicate witho.

These abstractions are reflected in the following Java interfaces:

public interface Identifier{
public NamingContext getContext();
public Object bind();
public Object resolve();
}

public interface NamingContext{
public Identifier export(Object obj);
}

The Identifier interface represents the generic notion of identifier described above. It contains a
reference to its naming context, and bears the fundamentalbind operation to set up a binding between two
(possibly remote) objects. The interface, using theresolve method, also permits returning the next element
in a chain of identifiers, where each identifier was obtained as the result ofexporting the next one to some
naming context.

An object implementing theNamingContext interface stands for the most generic notion of a naming
context which manages names of typeIdentifier. The interface includes theexport operation to create
a new name in a given context – which can also, if used repeatedly, createchains of identifiers of arbitrary
length.

Other methods, not represented here, deal with identifier transmission over the network, using encoding-

9

public classIncrementProtocolLayerextendsProtocolLayer{
private int sequence;
protectedUnMarshaller doUp(UnMarshaller um){

sequence = um.readInt();
return um;

}
protectedMarshaller doPrepare(Marshaller m){

m.writeInt(sequence + 1);
return m;

}
}

Listing 1: A protocol layer that deals with sequence numbers.

public classEchoProtocolStateextendsProtocolState{
public String enter()throws {

UnMarshaller um = up(); // start reading
String line = um.readStringLine();
Marshaller m = prepare(); // stop reading, start writing
m.writeStringLine(line);
down(m); // finish writing
return "END";

}
}

Listing 2: An echo protocol state.

independent representations, namely involving theMarshaller andUnMarshaller interfaces already de-
scribed.

This export-bind pattern is closely related to the communication part of the IMC framework: aProtocol
object can be viewed as a binder which exports (i.e., builds an access pathto) a communication end-point,
a ProtocolLayer designated through a specific type of identifier, namely a protocol layer identifier. Typi-
cally, theexport operation will be called by a server object to advertise its presence on the network. This
will be translated into a call to theaccept method of aNode object, to accept incoming network connec-
tions. Thebind operation will be called by a client-side object to bind to the interface designated by a given
identifier. This will be translated into a call to theconnect method of theNode object, to establish the
communication path to the remote server-side object.

3 Some Examples

In this section we will present some simple examples that show how the framework can be used to program
a customized protocol. We will not show all the details of the code, but we concentrate on how the single
objects developed by the programmer can be composed together and used from within the framework itself.

First of all, in Listing 1 we show a protocol layer that removes a sequence number from the input stream
and writes the incremented sequence number in the output stream. Thus, when a protocol state starts reading
this layer will remove this header and when a state starts writing this layer will addthe incremented sequence
number. Now we can create our protocol stack with this layer:

ProtocolStack mystack =newProtocolStack();
mystack.insertLayer(new IncrementProtocolLayer());

Then we can implement our own protocol; for simplicity our protocol will consist of only one state,
that does nothing but read a line and send that line back (an echo server); after that the protocol ends. In
order to implement such a state we only have to extend theProtocolState base class and provide the

10

implementation for the methodenter and return the stateEND as the next state in the protocol (Listing 2).
We can then create our protocol instance, set the protocol stack, and add the start state:

Protocol myprotocol =newProtocol();
myprotocol.setStack(mystack);
myprotocol.setState("START", newEchoProtocolState());

The protocol is now built, but no communication layer has been set yet. In order to do so, we can use
theNode class functionalities:

Node mynode =newNode();
mynode.accept(9999, myprotocol);
myprotocol.start();

These instructions wait for an incoming connection on port 9999, update the protocol with a starting connec-
tion state and a final disconnection state, and update the protocol stack with the low communication layer.
At this point, the protocol can start on the established physical connection.

As we hinted in Section 2, the framework provides a specialized protocol layer base class,
TunnelProtocolLayer, that permits implementing a tunneling layer, in order to envelop a protocol in-
side another one. A typical example is the one of anhttp tunnelthat wraps a protocol in HTTP requests
and responses. Notice that a tunnel layer does not simply remove a header when reading and add a header
when writing: typically it will need to read an entire message, strip the tunneling protocol information, and
pass to the upper layer the information that was wrapped; in the same way, it will need to intercept the
information written by the upper layer and wrap it into a message according to the tunneling protocol. For
this reason the framework provides this specialized base class with the features to implement these more
complex functionalities.

In particular,TunnelProtocolLayer provides two piped stream pairs to allow the tunnel layer to com-
municate with the tunneled layer: the fieldtunneledMarshaller is piped with the fieldnewUnMarshaller
(i.e., everything that is written intotunneledMarshaller can be read fromnewUnMarshaller). So, the
tunnel layer can implement thedoUp this way:

public classHTTPTunnelLayerextendsTunnelProtocolLayer{
protectedUnMarshaller doUp(UnMarshaller um){
String data = strip(readHTTPRequest(um));
tunneledMarshaller.writeStringLine(data);
return newUnMarshaller;

}

Similarly the implementation ofdoPrepare will return to the tunneled layer a pipedUnMarshaller and
doDown will read the data written by the tunneled layer from the other end of the pipe, envelop the data
in the tunnel protocol structure and pass everything to the lower layer by using theMarshaller originally
returned by the lower layer’sprepare method.

Since a tunneling layer is still a layer, it can be inserted smoothly in an existing protocol stack:

ProtocolStack mystack =newProtocolStack();
mystack.insertLayer(new IncrementProtocolLayer());
mystack.insertLayer(newHTTPTunnelLayer());

The representation of the protocol after the call toaccept is depicted in Figure 3. Let us stress that the
insertion of the tunnel layer did not require any change to the existing protocol states and layers.

4 Conclusions

We have presented a Java software framework for building infrastructures to support the development of
applications over global computers where mobility and network awareness are key issues. The framework
enables platform designers to customize communication protocols and networkarchitectures and is particu-
larly useful to develop run-time supports for languages oriented towardsglobal computing.

11

State Conn

START

State Discon

END

State Echo

remove
seqnum

add
seqnum+1

Layer Sequence

TCP UDP

Layer HTTP tunnel
GET 1Hello HTTP/1.1

2Hello

<!DOCTYPE HTML ...>

<HTML>

<BODY>

<HEAD></HEAD>

2Hello

</BODY>

</HTML>

1Hello

Hello

Layer TCP

Figure 3: The graphical representation of protocol with the HTTP tunneling.

The components have been designed after a close analysis of proposedmodels for mobile computing
[BCGL02, BBD+02]. We have tried to single out the most recurrent notions of network aware programming
and packed them together. Developers can then concentrate on those parts that are really specific of their sys-
tem, while relying on the framework for the recurrent standard mechanisms (node topology, communication
and mobility of code).

The main aim of the framework is making the development of prototype implementationsfaster and
relieving programmers from low level details. Of course, if applications require a specific functionality
that is not in the framework (e.g., a customized communication protocol built on top of TCP/IP, or a more
sophisticated mobile code management), programmers can still customize the behaviors that concern these
mechanisms in the framework.

In a companion document, we report on experiments with the framework. IMChas been used by using
it as the basis for implementingDπ [HR98] and to re-engineer KLAVA [BDP02], the run time support for
KLAIM [BBD+03]. We have already started investigating on the one hand the use of the framework to
implement richer languages for mobility and on the other hand how its componentscan be enriched or
needs to be modified to take security issues into account. Indeed, in the companion document we will also
report on a preliminary results and findings about the impact of the introduction of the concept of membrane
within IMC and its components.

12

References

[AGH00] K. Arnold, J. Gosling, and D. Holmes.The Java Programming Language. Addison-Wesley, 3rd
edition, 2000.

[ARS97] A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Language for Resource-aware Mobile
Programs. In Vitek and Tschudin [VT97], pages 111–130.

[BBD+02] L. Bettini, M. Boreale, R. De Nicola, M. Lacoste, and V. Vasconcelos. Analysis of Distribution
Structures: State of the Art. MIKADO Global Computing Project DeliverableD3.1.1, 2002.

[BBD+03] L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi, R. Pugliese,
E. Tuosto, and B. Venneri. The KLAIM Project: Theory and Practice. In C. Priami, editor,
Global Computing. IST/FET International Workshop, GC 2003, RevisedPapers, volume 2874
of LNCS, pages 88–150. Springer, 2003.

[BCGL02] G. Boudol, I. Castellani, F. Germain, and M. Lacoste. Models of Distribution and Mobility:
State of the Art. MIKADO Global Computing Project Deliverable D1.1.1, 2002.

[BDFP98] L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-KLAIM .
In Proc. WETICE, pages 110–115. IEEE, 1998.

[BDP02] Lorenzo Bettini, Rocco De Nicola, and Rosario Pugliese. KLAVA : a Java Package for Distrib-
uted and Mobile Applications.Software - Practice and Experience, 32(14):1365–1394, 2002.

[BFN+04] L. Bettini, D. Falassi, R. De Nicola, M. Lacoste, L. Lopes, M. Loreti, L. Oliveira, H. Paulino,
and V. Vasconcelos. Language experiments v1: Simple calculi as programming language.
MIKADO Global Computing Project Deliverable D3.2.1, 2004.

[Car99] Luca Cardelli. Abstractions for Mobile Computation. In Jan Vitek and Christian Jensen, editors,
Secure Internet Programming: Security Issues for Mobile and Distributed Objects, number 1603
in LNCS, pages 51–94. Springer-Verlag, 1999.

[CGPV97] G. Cugola, C. Ghezzi, G.P. Picco, and G. Vigna. Analyzing Mobile Code Languages. In Vitek
and Tschudin [VT97].

[CLZ98] G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile Agent Coordina-
tion. In K. Rothermel and F. Hohl, editors,Proc. of the 2nd Int. Workshop on Mobile Agents,
volume 1477 ofLNCS, pages 237–248. Springer, 1998.

[DHDS98] B. Dumant, F. Horn, F. Dang Tran, and J.-B. Stefani. Jonathan: an Open Distributed Processing
Environment in Java. InProceedings MIDDLEWARE’98, 1998.

[Exo02] ExoLab Group. The OpenORB project, 2002. Software available for download at
http://openorb.exolab.org/.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[HCK94] C. Harrison, D. Chess, and A. Kershenbaum. Mobile agents:Are they a good idea? Research
Report 19887, IBM Research Division, 1994.

[HHD98] R. Hayton, A. Herbert, and D. Donaldson. Flexinet: a Flexible Component Oriented Middleware
System. InProceedings ACM SIGOPS European Workshop, 1998.

13

[HP91] N. Huntchinson and L. Peterson. Thex-kernel: an Architecture for Implementing Network
Protocols.IEEE Transactions on Software Engineering, 17(1):64–76, 1991.

[HR98] Matthew Hennessy and James Riely. Resource access control insystems of mobile agents. In
Uwe Nestmann and Benjamin C. Pierce, editors,HLCL ’98: High-Level Concurrent Languages
(Nice, France, September 12, 1998), volume 16.3, pages 3–17. Elsevier Science Publishers,
1998.

[Kna96] F. Knabe. An overview of mobile agent programming. InProc. LOMAPS, number 1192 in
LNCS. Springer, 1996.

[KSO02] R. Klefstad, D. Schmidt, and C. O’Ryan. The Design of a Real-timeCORBA ORB using
Real-time Java. InProceedings ISORC’02, 2002.

[LO98] D. Lange and M. Oshima.Programming and Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1998.

[OKS+00] C. O’Ryan, F. Kuhns, D. Schmidt, O. Othman, and J. Parsons. The Design and Performance of
a Pluggable Protocols Framework for Real-time Distributed Object Computing Middleware. In
Proceedings MIDDLEWARE’00, 2000.

[PMR99] G.P. Picco, A.L. Murphy, and G.-C. Roman. LIME: Linda Meets Mobility. In D. Garlan, editor,
Proc. ICSE’99, pages 368–377. ACM Press, 1999.

[PR98] A.S. Park and P. Reichl. Personal Disconnected Operations withMobile Agents. InProc. of 3rd
Workshop on Personal Wireless Communications, PWC’98, 1998.

[PS97] H. Peine and T. Stolpmann. The Architecture of the Ara Platform for Mobile Agents. InProc.
MA, number 1219 in LNCS, pages 50–61. Springer, 1997.

[Tho97] T. Thorn. Programming Languages for Mobile Code.ACM Computing Surveys, 29(3):213–239,
1997. Also Technical Report 1083, University of Rennes IRISA.

[VT97] J. Vitek and C. Tschudin, editors.Mobile Object Systems - Towards the Programmable Internet,
number 1222 in LNCS. Springer, 1997.

[Whi96] J. E. White. Mobile Agents. In J. Bradshaw, editor,Software Agents. AAAI Press and MIT
Press, 1996.

14

