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Abstract

This document discusses the progress in the implementatftitre MikADO Core Software Frame-
work, that we call IMC [mplementing Mobile Calcyli The framework has been developed to build
run-time support for languages oriented aiming at progrargrglobal computing applications. It en-
ables platform designers to customize communication pod$oand network architectures and guaran-
tees transparency of name management and code mobilitstitbdied environments. A first version of
the IMC framework was delivered last year [BED4]. The version described here has been completely
re-designed and implemented with the aims of guaranteeitigrusability and additional features. The
actual changes have been prompted by the actual use of thevikak by two units of the project. The
IMC framework has been used to re-engineer thentd package (the runtime support forLKim)
and to implement two variants @frt, one of the reference calculi for the mikado domain basedeatnod
Investigation have started to consider the embedding theegt of membrane within IMC that have
lead to guidelines that will be used for further implemeiotad. The framework presented here will be
released as open source software. The actual code of tkeetiffiMC components can be inspected at
the following addresshtt p: // nusi c. dsi . unifi.it/software/
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1 Introduction

Technological advances of both computers and telecommunication nefaackgdevelopment of more ef-
ficient communication protocols are leading to an ever increasing integrdtammgputing systems and to
diffusion of so called Global Computers [Car99]. This is a massive n&&aand dynamically reconfig-
urable infrastructure interconnecting heterogeneous, typically autamama mobile components, that can
operate on the basis of incomplete information.

Global Computers are fostering a new style of distributed programming tabhake into account
variable guarantees for communication, cooperation and mobility, resosegge, security policies and
mechanisms. This has stimulated the proposal of new theories, computatoadigons, linguistic mech-
anisms and implementation techniques for the design, realization, deployniemteenragement of global
computational environments and their applications.

We have thus witnessed the birth of many calculi and kernel languagedéatémsupport programming
according to the new style and to provide tools for formal reasoning oeemtidelled systems. We have
also seen that, to assess the impact and quality of the proposals, many imptemsiofethese formalisms
have been proposed. Very often, the language used for implementatiamaigAIGHO0]. Indeed, Java
provides many useful features for building network applications with molbiteeoobject serializationto
encode/decode object structure into/from a streynamic class loadindo insert a new class dynamically
into a running application, a widgetwork class libraryand language-basagnchronizatioriunctionalities.

Indeed, Java [AGHOO] provides many useful features that areuieipbuilding general network ap-
plications and in particular with network applications mobile codlgject serializationto encode/decode
object structure into/from a streauynamic class loadingo insert a new class dynamically into a running
application, a wide network class library and language based synchtiomfunctionalities.

However, these above mentioned Java mechanisms still require a bigmroma effort, and so they
can be thought of as “low-level” mechanisms. Because of this, many existiuagbased distributed systems
(see, e.g., [LO98, ARS97, PS97, CLZ98, BDFP98, PMR99] and fheareces therein) tend to re-implement
from scratch many components that are typical and recurrent in distliangtmobile applications.

To support the implementation of languages for global computing, we harevierking on a generic
framework called IMC [mplementing Mobile Calculithat can be used as a kind of middleware for the
implementation of different distributed mobile systems. Such a framework ainesreg &s general as pos-
sible and at providing the necessary tools for implementing new languagerreisystems directly derived
from calculi for mobility. The basic idea and motivation of this framework is thatimplementer of a new
language would need concentrating on the parts that are really spedii ®fstem, while relying on the
framework for the recurrent standard mechanisms. The developmprtotype implementations should
then be quicker and the programmers should be relieved from dealing wileleldetails. The proposed
framework aims at providing all the required functionalities and abstracfmnarbitrary components to
communicate and move in a distributed setting.

After analysis of different kernel languages for mobility, we singled foutr components described
below as a foundation for IMC:

Communication Protocols provides abstractions and reference implementations to build customized com-
munication protocols.

Code Mobility provides the basic functionalities for making code mobility transparent to tigrgammer.
It deals with object marshalling, code migration, and dynamic loading of code.

Node Topology manages the topological structure of the network and its components.|dtvdéaprim-
itives for connection and disconnection, node creation and deletion @ahellvased decentralized

topology.



Naming and Binding defines a uniform way to designate and interconnect the set of objeotgddvin
the communication paths between computational nodes. It deals with primitivesifte creation
and deletion, typing and policies for name resolution.

IMC already provides concrete implementations for the standard and medtfuisctionalities that
should fit most Java mobile framework requirements (e.g., Java byte-cdoiétynand standard network
communication mechanisms). The user of the IMC package can then custamigepthe framework
by providing its own implementations for the interfaces used in the packagéhisimespect, the IMC
framework will be straightforward to use if there is no need of specifiaaded features. Nevertheless, the
framework is open to customizations if these are required by the specific mopsigns one is willing to
implement. Customization of the framework can be achieved seamlessly tharésida gatterns such as
factory methodabstract factorytemplate methodndstrategy[GHJV95] that are widely used throughout
the package.

The framework was designed to achieve binémsparencyandadaptability For instance, concerning
code mobility, the framework provides all the basic functionalities for making eodbility transparent to
the programmer: all issues related to code marshalling and code dispat@madied automatically by the
classes of the framework. Its components are designed to deal with otgesitalling, code migration, and
dynamic loading of code. The framework can also be adapted to deal with meamork topologies (flat,
hierarchical, peer-to-peer networks, etc.) and with message dispatuinfgrwarding. Furthermore, the
implementer can build his own communication protocols by specializing the prdiaselclasses provided
by the framework. Thus, the developer will only have to implement the partsitbaelevant to the system
he wants to build: typically, he will develop the communication protocol which bmedches application-
specific requirements. Connections and network topology are dealt watttlgifrom within the framework.
However, the developer can access the current state of its application tine by using listeners to events
that the classes of the framework generate.

The main intent of the IMC framework is not to be “yet another” distributed iteddystem. It should
rather be seen at a meta-level, as a framework/toolbox for building “yé¢hari distributed mobile system.
A first version of the IMC framework was delivered last year [BFM]. The version described here has
been completely re-designed and implemented with the aims of guaranteeingibeliitity and additional
features. The actual changes have been prompted by the actual theeframework by two units of the
project. Indeed, we have used the IMC framework to re-engineer theKpackage (the runtime support
for KLAIM ) and to implement two variants @frt, one of the reference calculi for the mikado domain based
model.

In the rest of this document we shall describe the different componétie eevised IMC and shall
present a couple of small examples aiming at showing the flexibility and potentifthe described frame-
work.

The framework presented here will be released as open source Tt actual code of the different
components can be inspected at the following addiedsa: // musi c. dsi . unifi.it/software/



2 Overview of the IMC Framework

In this section we sketch the main parts of the framework, their interfaceiantionalities. For the sake
of simplicity we will not detail all the method signatures, e.g., we will not show Kuegtions.

2.1 Communication Protocols

When implementing a distributed system, one of the system-specific issues iscibe ohthe com-
munication protocol, which may range from high-level protocols such sa BRMI, well integrated
with the Java Virtual Machine environment and taking advantage of thétectiral independence pro-
vided by Java, to protocols closer to hardware resources such a8PTGRirshalling strategies may
range from dedicated byte-code structures to Java serialization. Aigememunication framework
[HHD98, Ex002, OKS 00, KSO02, DHDS98] should strive to be minimal, and allow to introduce sup-
port for new protocols with little effort, without need to re-implement a new cominaiions library.

Thus, IMC provides tools to define customized protocol stacks, whickienged as a flexible compo-
sition of micro-protocols. The IMC design, inspired from thkernel [HP91] communication framework,
allows to defindindingswith various semantics, and to combine them in flexible ways. In other wortls, w
simple architectural principles such as separating marshalling from ptatguementation, IMC allows to
create adaptable access and communication paths between componenssridfiaed! system with a wide
variety of semantics: mobile, persistent, with QoS guarantees, etc. ThGsetislbles to achieve adaptable
forms of communication transparency, which are needed when implementindrastructure for global
computing.

In the IMC framework, anetwork protocolike, e.g., TCP, UDP, or GIOP is viewed as an aggregation
of protocol statesa high-level communication protocol can indeed be described as a statesdon. The
programmer implements a protocol state by extendindtloeéocol St at e abstract class and by providing
the implementation for the methaaht er, which returns the identifier of the next state to execute. The
Prot ocol class aggregates the protocol states and providastiglate methoflGHJV95]st art that will
execute each state at a time, starting from the first protocol state up to therfealhus, the programmer
must simply provide the implementation of each state, put them in the correctior@@rotocol instance,
and then start the protocol.

public classProtocol{
public void start(){ /« executes the states }

}

public abstract classProtocolState
public abstract String enter();

}

The protocol states abstract from the specific communication layer. Taidemnre-using of a proto-
col implementation independently from the underlying communication means: rtieeg@tocol can then
be executed on a TCP socket, on UDP packets or even on streams at@mehél (e.g., to simulate a
protocol execution). This abstraction is implemented by specialized strédamshal | er (to write) and
UnMar shal | er (to read). These streams provide high-level and encoding-indeperefgesentations of
messages that are about to be sent or received, i.e., they are basi@thlgasion of standaiht aCut put
andDat al nput Java streams, with the addition of means to send and receive migrating eptsEn(ed
later) and serialize and deserialize objects. The interfatielsr shal | er is the following (the interface of
Mar shal | er contains the corresponding write instead of read methods):
public interface UnMarshallerextendsDatalnput, Closeable, MigratingCodeHand{er

public Object readReference();

public MigratingCode readMigratingCode();
public MigratingPacket readMigratingPacket();

}
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Figure 1: Protocol States and Protocol Stack Abstractions.

The data in these streams can be “pre-processed” by some custqrozecbl layersthat can remove
some information from the input and can add some information to the output: ltygtta information are
protocol specific headers removed from the input and added to thetodtgarotocol layer is an abstract
representation of a communication channel which uses a given protadets messages be sent and re-
ceived through the communication channel it stands for using that ptofdw®base clas? ot ocol Layer
deals with these functionalities, and can be specialized by the programmesvidephis own protocol
layer. These layers are then composed irfoa ocol St ack object that ensures the order of preprocessing
passing through all the layers in the stack. The structure of a protot¢ahirescan then be depicted as in
Figure 1.

For instance, the programmer can add a layer that removes a sequarizer from an incoming packet
and adds the incremented sequence number into an outgoing packetarmke/firk also provides function-
alities to easily implemertunnels so that it can be possible, e.g., to implement a tunneling layer to tunnel
an existing protocol into HTTP (see Section 3).

Before reading something from a stack, a protocol state must obtdinManshal | er instance from
the stack by calling the methagb: this allows the stack layers to retrieve their own headers. In the same
way, before starting to write information to the network, the state must obténshal | er instance from
the stack by calling the methau epar e, so that the stack layers can add their own headers into the output.
When the state has finished to write, it must notify the stack by calling the melhed passing the
marshaller instance it had used to write the information, in order to flush thatduifier.

The methodsip, pr epar e anddown are declareg@ublic andfinal in the base clag ot ocol Layer : the
subclasses should instead provide their own implementations for these Aatitiés in the methoddoUp,
doPr epar e anddoDown, respectively. The public methods in the base class will ensure that thedsetho
implemented in the derived classes will be called in the right order so to implemestattieof layers.

public classProtocolLayeq
public final UnMarshaller up() /+ implementation of the framewoxk }
protected UnMarshaller doUp(UnMarshaller unf)/« implementation of the programmef }
public final Marshaller prepare() /+ implementation of the framewo# }



protected Marshaller doPrepare(Marshaller g}« implementation of the programmef }
I+ similar for down()«/

}

TheUnMar shal | er returned by the lower layer in the stack is passed to the implementation nusttod
thus, a layer can use the pas&idlar shal | er to retrieve its own header and pass Undkr shal | er to

the next layer, or it can create a nénMar shal | er to pass to the next layer. The latter scenario is typical
of tunneling layers (as briefly shown in Section 3). Similarly, theshal | er returned by the lower layer
is passed tdoPr epar e. Typically, the firstunMar shal | er andMar shal | er objects will be created by the
lowest layer, e.g., in case of a TCP socket, it will be a stream attached todket stself, while, in case of
UDP packets, it will be a buffered stream attached to the datagram cantemtsayers for TCP and UDP
are already provided by the framework.

2.2 Code Mobility

When code (e.g., a process or an object) is moved to a remote computer, sesatagy be unknown at
the destination site. It might then be necessary to make such code availabledotion at remote hosts;
this can be done basically in two different wagsitomaticapproach, i.e., the classes needed by the moved
process are collected and delivered together with the prooassemandapproach, i.e., the class needed
by the remote computer that received a process for execution is redjtedtes server that did send the
process. We follow the automatic approach because it complies better with thike mgent paradigm:
when migrating, an agent takes with it all the information that it may need fordéatmutions. This makes
the code migration completely transparent to the programmer, so that he wiliveto worry about classes
movement. Our choice has also the advantage of simplifying the handlisigazinnected operatior{the
agent can execute even if the owner is not connected) [PR98]. Thisotde possible with the on-demand
approach: the server that sent the process must always be on-lirdeirnto provide the classes needed by
remote hosts. The framework also provides means to support a fullyroardeapproach.

With the automatic approach, an object will be sent along with the byte-coite @éss, and with the
byte-code of all the classes of the objects it uses (i.e., all the byte-codedsrior execution). Obviously,
only the code of user-defined classes must be sent, as other codddeagclass libraries and the classes
of the IMC packages) must be common to every application. This guarathi@eslasses belonging to
Java standard class libraries are not loaded from other sourcesig@bp the network); this would be very
dangerous, since, in general, such classes have many more adedesgesrwith respect to other classes.
The framework also allows the programmer to manually exclude other classestire packages) from
mobility.

The framework defines the empty interfadeyr at i ngCode that must be implemented by the classes
representing a code that has to be exchanged among distributed sitesodenis intended to be transmitted
inaM gratingPacket , stored in the shape oftgt e array. How aM gr at i ngCode object is stored in and
retrieved from av gr at i ngPacket is taken care of by the these two interfaces:

public interface MigratingCodeMarshallef
public MigratingPacket marshal(MigratingCode code);

}

public interface MigratingCodeUnMarshallef
public MigratingCode unmarshal(MigratingPacket p);

}

Starting from these interfaces, the framework provides concrete slésaeautomatically deal with
migration of Java objects together with their byte-code, and for transpamedisrializing such objects
by dynamically loading their transmitted byte-code. In particular, the framewmvides the base class
JavaM grat i ngCode, implementing the above mentioned interfaldegr at i ngCode, that provides all the
procedures for collecting the Java classes that the migrating object haisgadithe remote site:
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public classJavaMigratingCodextendsThreadimplements MigratingCode{
public JavaMigratingPacket makgacket(){...}

}

The methodrake_packet will be used directly by the other classes of the framework or, possibigitir
by the programmer, to build a packet containing the serialized (marshallesipvef the object that has
to migrate together with all its needed byte-code. Thus, this method will actuaélyctaile of all the code
collection operations. The names of user defined classes can be etriemeeans of class introspection
(Java Reflection ARI Just before dispatching a process to a remote site, a recursivedpreds called for
collecting all classes that are used by the process when declaring: datidense objects returned by or
passed to a method/constructor, exceptions thrown by methods, innersgltss interfaces implemented
by its class, the base class of its class. Once these class names are ¢ohentbgite code is gathered and
packed along with the object inJavaM gr ati ngPacket object (a subclass &f grati ngPacket storing
the byte-code of all the classes used by the migrating object, besidesithiegaseobject itself).

Finally, two classes, implementing the above mentioned interfAtgsati ngCodeMar shal | er
and M grat i ngCodeUnMar shal | er, will take care of actually marshalling and unmarshallingaaa-
M grati ngPacket containing a migrating object and its code:

public classJavaByteCodeMarshallenplements MigratingCodeMarshallef...}
public classJavaByteCodeUnMarshallanplements MigratingCodeUnMarshallef...}

In particular, the first one will basically rely on the methoake _packet of JavaM gr at i ngCode, while
the second one will rely on a customizeldss loadelprovided by the framework (sodeC assLoader) to
load the classes stored in thavaM gr at i ngPacket and then on Java serialization to actually deserialize
the migrating code contained in the packet.

The readM gr ati ngCode method of theUnMar shal | er, shown in Section 2.1, will rely on an a
M grati ngCodeUnMar shal | er to retrieve a migrating object and the corresponding methéo#riahal | er
will rely on aM grati ngCodeMar shal | er to send a migrating object, so that all the code mobility issues
will be dealt with internally by the framework. Even in this case, the progranuaueprovide his own im-
plementations oM gr ati ngCodeUnMar shal | er andM gr at i ngCodeMar shal | er so that the framework
will transparently adapt to the customized code mobility.

2.3 Node Topology

The framework already provides some implemented protocols to deal witkectoms and disconnections
(these protocols can be specialized or overridden by the programmi¢in)thi8 respect, the concept of con-
nection is logical, since it can then rely on a physical connection (e.g., ®€#ts) or on a connectionless
communication layer (e.g., UDP packets). In the latter case, a keep-aliemsia can be implemented.
A Connect i onManager instance will keep track of all the connections.

This can be used to implement several network topology structufie:network where only one server
manages connections and all the clients are at the same lehieraachical network where a client can be
in turn a server and where the structure of the network can be a treegen@nal, an acyclic graph of nodes;
or, apeer-to-peenetwork.

A participant of a network is an instance of the clébse contained in the framework. A node is
also a container of running processes that should be thought of agrtiitational units. The framework
provides all the means for a process to access the resources coritamedde and to migrate to other
nodes. Thus, a developer of a distributed and mobile code system hasrmakéns to start to implement its
own infrastructure or the run-time system for a mobile code language. @egsds a subclass of the class
NodePr ocess that implements théavaM gr at i ngCode base class (this allows to easily migrate a process
to a remote site), and can be added to a node for execution with the naelifercbcess of the class\ode.

A NodePr ocess has the following interface:

public abstract classNodeProcesextendsJavaMigratingCodé
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public abstract void execute();
public final void run() {
/I framework initialization operations; then call exec(te

}
}

Thus, a node keeps track of all the processes that are currentlydatExe A concurrent process is started
by callingstart on theNodePr ocess thread; the final implementation ofin will initialize the process
structure (not detailed here) and then inveecutdghat must be provided by the programmer.

A different kind of process, calledode coordinataris allowed to execute privileged actions, such as
establishing a connection, accepting connections from other nodesjgckbgonnection, etc. Standard
processes are not given these privileges, and this allows to separegsses that deal with node configura-
tions from standard programs executing on nodes. For these preeesgecialized class is provided called
NodeCoor di nat or .

The programmer can provide its implementation of the concelgtadLocat i on to address in a unique
way a node in the net (e.g., the standard IP address:port representétitiere is a (logical) connection
with a node, then a location is mapped by the connection manager into a prstiaial Thus a process can
retrieve a stack to run its own protocols with a remote node.

The framework also provides means to dynamically “manipulate” a protocokerihips extending a
protocol automaton by adding new states and extending the protocol stac&drting new layers. With
respect to the manipulation of the protocol automaton, it is possible to add atadimg state and a new
final state, so that the original protocol is embedded in an extended ploWwhen a new start and a new
end state are added to an existing protocol, the framework will also takefo@-@aming the previous start
and end state and update all the references to the original start anthendith the re-named version. This
will guarantee that the original protocol will transparently work as teefoternally, while from the outside,
the new start state will be executed before the original start state anditendestate will be executed after
the original end state.

The manipulation of a protocol is used internally by the classes of the frarkgf@oinstance in connec-
tion and disconnection management. Node class provides aonnect method to establish a connection
and a methodccept to accept a connection (these connections are both logical and phy$itae meth-
ods, apart from the connection details (e.qg., host and port) also takécg@rinstance. These methods will
take care of establishing (accepting, resp.) a physical connectiom, ladital connect protocol state as the
new start state and a logical disconnect state as the end state to the passeal.pThey also take care of
setting the low layer in the protocol stack (e.g., TCP socket or UDP dataprdimsn, the protocol can be
started. This manipulation is depicted in Figure 2.

2.4 Naming and Binding

The framework also supports logical name management, inspired bpiradAN ORB [DHDS98]. The
aim of this part of the framework is to define a uniform manner to designatenéerconnect the set of
objects involved in the communication paths between computational nodes.

In the IMC framework, andentifieris a generic notion of name that uniquely designates an object in
a given naming context. ldentifier semantics are naming context-specificibatied, persistent, etc. A
naming contexprovides name creation and management facilities. It guarantees thatfdhelmames it
controls designates some object unambiguously. It generally maps a namelijeet or entity designated
by that name, or can also map names to other contexts, if the resolution of neeusso be refined. Finally,
abinderis a a special kind of naming context that, for a given managed name, is atrleate an access
path, also callethinding towards the object designated by that name.

These definitions offer a generic and uniform view of bindings, andlglsaparate object identification
from object access:
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Figure 2: The original protocol (left) and the new protocol extended witlew start and end state and the
TCP layer (right).

e Inagiven naming contexic, a new name for an objecis obtained by thac. export (0) invocation.
Chains of identifiers can then be created by exporting that name to otherghaeomtexts.

e The creation of an access path to obgedesignated by identifierd is performed by théd. bi nd()
invocation which returns a ready-to-use surrogate to communicat@with

These abstractions are reflected in the following Java interfaces:

public interface Identifier {
public NamingContext getContext();
public Object bind();
public Object resolve();

}

public interface NamingContex{
public Identifier export(Object obj);

}

Theldentifier interface represents the generic notion of identifier described abowentains a
reference to its naming context, and bears the fundamiintdloperation to set up a binding between two
(possibly remote) objects. The interface, usingrtésol ve method, also permits returning the next element
in a chain of identifiers, where each identifier was obtained as the resipofting the next one to some
naming context.

An object implementing th&lam ngCont ext interface stands for the most generic notion of a naming
context which manages names of tyment i fi er. The interface includes trexport operation to create
a new name in a given context — which can also, if used repeatedly, clestes of identifiers of arbitrary
length.

Other methods, not represented here, deal with identifier transmissiotihevestwork, using encoding-



public classIncrementProtocolLayextendsProtocolLayer
private int sequence;
protected UnMarshaller doUp(UnMarshaller unf)
sequence = um.readint();
return um,;

}

protected Marshaller doPrepare(Marshaller #n)
m.writelnt(sequence + 1);
return m;

}
}

Listing 1: A protocol layer that deals with sequence numbers.

public classEchoProtocolStatextendsProtocolState
public String enter(throws {
UnMarshaller um = up(); // start reading
String line = um.readStringLine();
Marshaller m = prepare(); // stop reading, start writing
m.writeStringLine(line);
down(m); // finish writing
return "END";

Listing 2: An echo protocol state.

independent representations, namely involvingMiweshal | er andUnMar shal | er interfaces already de-
scribed.

This export-bind pattern is closely related to the communication part of the ttt@dwork: &r ot ocol
object can be viewed as a binder which exports (i.e., builds an acces®patbommunication end-point,
aProtocol Layer designated through a specific type of identifier, namely a protocol layetifiée. Typi-
cally, theexport operation will be called by a server object to advertise its presence oretiwenk. This
will be translated into a call to theccept method of aNode object, to accept incoming network connec-
tions. Thebi nd operation will be called by a client-side object to bind to the interface desigjbgta given
identifier. This will be translated into a call to tleennect method of theNode object, to establish the
communication path to the remote server-side object.

3 Some Examples

In this section we will present some simple examples that show how the fratnemmmbe used to program
a customized protocol. We will not show all the details of the code, but weerdrate on how the single
objects developed by the programmer can be composed together andomsedthin the framework itself.

First of all, in Listing 1 we show a protocol layer that removes a sequemtder from the input stream
and writes the incremented sequence number in the output stream. Thoss pitoeocol state starts reading
this layer will remove this header and when a state starts writing this layer witheddcremented sequence
number. Now we can create our protocol stack with this layer:

ProtocolStack mystack rew ProtocolStack();
mystack.insertLayenew IncrementProtocolLayer());

Then we can implement our own protocol; for simplicity our protocol will cansfsonly one state,
that does nothing but read a line and send that line back (an echo)seifter that the protocol ends. In
order to implement such a state we only have to extendPtloeocol St at e base class and provide the
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implementation for the methoght er and return the statéND as the next state in the protocol (Listing 2).
We can then create our protocol instance, set the protocol stackddrideastart state:

Protocol myprotocol snew Protocol();
myprotocol.setStack(mystack);
myprotocol.setStateSTART" , new EchoProtocolState());

The protocol is now built, but no communication layer has been set yet.dir ¢o do so, we can use
theNode class functionalities:

Node mynode :new Node();
mynode.accept(9999, myprotocol);
myprotocol.start();

These instructions wait for an incoming connection on port 9999, updafme thocol with a starting connec-
tion state and a final disconnection state, and update the protocol stack evitwticommunication layer.
At this point, the protocol can start on the established physical connection

As we hinted in Section 2, the framework provides a specialized protocdr lagse class,
Tunnel Prot ocol Layer, that permits implementing a tunneling layer, in order to envelop a protocol in-
side another one. A typical example is the one oh#p tunnelthat wraps a protocol in HTTP requests
and responses. Notice that a tunnel layer does not simply remove a hdatereading and add a header
when writing: typically it will need to read an entire message, strip the tunnetwiggol information, and
pass to the upper layer the information that was wrapped; in the same wall, need to intercept the
information written by the upper layer and wrap it into a message according torheling protocol. For
this reason the framework provides this specialized base class with theee&iumplement these more
complex functionalities.

In particular,Tunnel Pr ot ocol Layer provides two piped stream pairs to allow the tunnel layer to com-
municate with the tunneled layer: the fi¢ldnnel edMVar shal | er is piped with the fieldhewUnMar shal | er
(i.e., everything that is written intounnel edMar shal | er can be read fromewUnMar shal | er). So, the
tunnel layer can implement thi®Up this way:
public classHTTPTunnelLayeextendsTunnelProtocolLayef

protected UnMarshaller doUp(UnMarshaller ung)
String data = strip(readHTTPRequest(um));
tunneledMarshaller.writeStringLine(data);
return newUnMarshaller;

}

Similarly the implementation odioPr epar e will return to the tunneled layer a pipegiMar shal | er and
doDown will read the data written by the tunneled layer from the other end of the pipelap the data
in the tunnel protocol structure and pass everything to the lower layesibyg theMar shal | er originally
returned by the lower layerjs epar e method.

Since a tunneling layer is still a layer, it can be inserted smoothly in an existirtggal stack:
ProtocolStack mystack rew ProtocolStack();

mystack.insertLayenew IncrementProtocolLayer());
mystack.insertLayenew HTTPTunnelLayer());

The representation of the protocol after the calatoept is depicted in Figure 3. Let us stress that the
insertion of the tunnel layer did not require any change to the existingquigtates and layers.

4 Conclusions

We have presented a Java software framework for building infrastascto support the development of
applications over global computers where mobility and network awarenesewnissues. The framework
enables platform designers to customize communication protocols and netwbitectures and is particu-
larly useful to develop run-time supports for languages oriented tovgdotdal computing.
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Figure 3: The graphical representation of protocol with the HTTP tungelin

The components have been designed after a close analysis of prapodets for mobile computing
[BCGLO2, BBD'02]. We have tried to single out the most recurrent notions of networkesgragramming
and packed them together. Developers can then concentrate on thissbgitaare really specific of their sys-
tem, while relying on the framework for the recurrent standard mechanrsrdg topology, communication
and mobility of code).

The main aim of the framework is making the development of prototype implementdtistes and
relieving programmers from low level details. Of course, if applicationsiireca specific functionality
that is not in the framework (e.g., a customized communication protocol builtpafteCP/IP, or a more
sophisticated mobile code management), programmers can still customize thimtsetheat concern these
mechanisms in the framework.

In a companion document, we report on experiments with the framework. HdMeen used by using
it as the basis for implementingm [HR98] and to re-engineer Kava [BDP02], the run time support for
KLAIM [BBD'03]. We have already started investigating on the one hand the use ofthewbork to
implement richer languages for mobility and on the other hand how its compocamtse enriched or
needs to be modified to take security issues into account. Indeed, in ther@omgdacument we will also
report on a preliminary results and findings about the impact of the inttioduaf the concept of membrane
within IMC and its components.
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