
Resource Access Control

with Dynamic Acquisition

of Access Rights

Daniele Gorla and Rosario Pugliese

Dipartimento di Sistemi e Informatica

Università di Firenze

MIKADO – Workshop

Firenze, 6th December 2002

1

Summary

• Overview of Klaim

• µKlaim: Main Features and Syntax

• A Capability Based Type System

• Static and Dynamic Typing

• Variants and Future Work

2

Klaim : An Overview

Main Features of past works:

• Asynchronous communication via a shared memory

• Distribution and Mobility

• Remote and Local operations

• Flat net architecture with dynamic evolution

• Access control via types

– Process type = actions the process intends to perform over the net

– Node type = security policy of the node

– Well-typedness = types of processes do agree with the security policy of

the nodes hosting them

3

µKlaim: A core calculus for Klaim

We removed: - distinction between logical and physical addresses

(and allocation environments)

- higher order communication

- types with global information

We added: dynamic privileges acquisition

We obtained: - types with only local information

- efficient type handling

- simpler semantics and type systems

The price paid: more run time checks

4

µKlaim Syntax

Nets N ::= 0
∣∣∣ l ::δ P

∣∣∣ N1 ‖ N2

Processes P ::= nil
∣∣∣ a.P

∣∣∣ P1 | P2

∣∣∣ A

Actions a ::= read(T)@`
∣∣∣ in(T)@`

∣∣∣ out(t)@`
∣∣∣ eval(P)@`

∣∣∣ newloc(u : δ)

Templates T ::= F
∣∣∣ F, T

Tem.Fields F ::= f
∣∣∣ ! x

∣∣∣ ! u : π

Tuples t ::= f
∣∣∣ f, t

Tuple Fields f ::= e
∣∣∣ ` : µ

Expressions e ::= V
∣∣∣ x

∣∣∣ . . .

5

Types for Resource Access Control (1)

• We control via types the possible operations, i.e. i, r, o, e, n (capabilities).

Π is formed by the non–empty subsets of capabilities

• A node is l ::δ P , where δ is the security policy of the node

(i.e. what P can perform once executed in l)

• Formally, δ : Loc ⇀ Π

• For example : l ::[l1 7→{i,o},...] in(. . .)@l1 is legal

l ::[l1 7→{i,o},...] eval(. . .)@l1 is not

• Well–typedness ⇒ no illegal operations at run-time.

6

Types for Resource Access Control (2)

Dynamic Acquisition of Privileges:

We want to model a situation like

N
4
= l1 ::[l2 7→{i}] in(!u : {o})@l2.out(100)@u ‖

l2 ::[...] out(l)@l2

Âout−→Âin−→ l1 ::[l2 7→{i},l 7→{o}] out(100)@l ‖ l2 ::[...] nil

i.e. l2 grants l1 the capability of performing an out at l.

But what if l2 does not own capability o over l?

7

Pre-Types (1)

1. In out, each locality is annoted with the capabilities passed.

N1
4
= l1 ::[l2 7→{i}] in(!u : {o})@l2.out(100)@u ‖

l2 ::δ out(l : [l1 7→ {o, e}, l3 7→ {i}])@l2

2. When the out is fired, it is verified that the capabilities passed be effectively

owned by the node performing it.

N1 Âout−→ l1 ::[l2 7→{i}] in(!u : {o})@l2.out(100)@u ‖
l2 ::δ out(l : [l1 7→ {o, e}, l3 7→ {i}]) 4

= N ′
1

if {o, e, i} ⊆ δ(l)

8

Pre-Types (2)

3. When the communication takes place, it is verified that the capabilities

required in the template are granted by the tuple to the locality performing

the in.

N ′
1 Âin−→ l1 ::[l2 7→{i},l 7→{o}] out(100)@l ‖ l2 ::δ nil

since o ∈ {o, e}

9

Pre-Types (3)

It is reasonable to:

• pass all the capabilities owned over a given locality

• pass all the capabilities, except someones

The capabilities really passed can be extablished ONLY at run-time; a pre-type

syntactically expresses only the intentions of passing.

A pre-type is a partial function

µ : L ∪ U ⇀ Π ∪ Π∅

with finite domain, where Π∅
4
= { π : π ∈ Π ∪ {∅} }.

10

Pre-Types (4)

Examples:

• out(l′ : [l 7→ π]) passes everything except π

• out(l′ : [l 7→ ∅]) passes everything

Pre-types are evaluated before firing the out in order to

• evaluate the set of capabilities to be passed

• check them against the security policy

11

Static Type Inference (1)

l ::[...,l
′ 7→{i}] in(!u : {o})@l′.out(100)@l′

What should we do with it? Two possibilities:

1. statically refuse it

2. delay the decision at run-time

On the contrary, we shall always refuse

l ::[...,l
′ 7→{i}] in(!u : {o})@l′.in(100)@u

Static type inference :

• action using a variable as target: check that the action respects the decla-

ration of the variable

• action using a locality as target: if the action is not legal, mark it and delay

decision at run-time

12

Static Type Inference (2)

Definition 1 A net is well-typed if for each node l ::δ P there exists P ′ s.t.

δ|
l

P . P ′.

Intuitively, it says that P can be properly marked (P ′) s.t.

• non marked actions in P ′ respect policy δ

• variables are used coherently to their declarations

Definition 2 A net is executable if for each node l ::δ P it holds δ|
l

P . P .

Intuitively, it says that no further markings are needed in order to safely execute

the net.

13

µKlaim Semantics (Dynamic Typing)

• Evaluating pre-types

• Enabling communication

• Authorizing migrations

δ′| l′ Q . Q′

l ::δ eval(Q)@l′.P ‖ l′ ::δ
′
P ′Â−→l ::δ P ‖ l′ ::δ

′
P ′|Q′

• Executing marked actions (in-lined reference monitor)

l′ = loc(a) cap(a) ∈ δ(l′) l ::δ a.P ‖ l′ ::δ
′
QÂ−→N

l ::δ a.P ‖ l′ ::δ
′
QÂ−→N

14

Main Results

Theorem 1 (Subject Reduction) If N is executable and NÂ−→N ′ then N ′

is executable.

Theorem 2 (Type Safety) If N is executable then N ↑ l for no l ∈ loc(N).

where N ↑ l is the run time error predicate, whose main case is

cap(a) 6∈ δ(loc(a))
l ::δ a.P ↑ l

Corollary 1 If N is executable and NÂ−→∗N ′ then N ′ ↑ l for no l ∈ loc(N ′).

The same results hold in a local version, i.e.

Theorem 3 If all the nodes in D ⊆ loc(N) are executable and NÂ−→∗N ′ then

N ′ ↑ l for no l ∈ D.

15

Variations(1)

Acquisition by Nodes and Processes: Mobile processes can acquire rights

also for themselves.

• Actions: a ::= . . . | inp(T)@` | readp(T)@`

• Mobile Processes syntactic category: AP ::= {{ P }}δ

• New capabilities: ip, rp

• The semantics of inp/readp are similar to in/read but the acquisition is

recorded in the process type.

matchl(T [[T]]δ1[δ], et) = 〈δ′′, σ〉
l ::δ {{ inp(T)@l′.P }}δ1 ‖ l′ ::δ

′
out(et)Â−→l ::δ {{ Pσ }}δ1[δ′′] ‖ l′ ::δ

′
nil

16

Variations (2)

Consumption of Access Rights: Once used, rights are lost.

• Multisets of capabilities.

• In the reductions, types are decreased accordingly to

– the action performed

– the privileges passed

• In migrations, rights are properly split.

δ1 = δ′1[δ
′′
1] δ′[δ′′1]| l′ Q . Q δ[δ′1]| l P . P

l ::δ {{ eval(Q)@l′.P }}δ1 ‖ l′ ::δ
′ APÂ−→l ::δ {{ P }}δ′1 ‖ l′ ::δ

′ AP|{{Q }}δ′′1

17

Variations (3)

Time Expiration of Access Rights: Capabilities can be assigned a duration:

a privilege is available until the timeout associated to it is not yet expired.

• Capabilities are indexed with a number representing a timeout.

E.g. [l 7→ {i10, o5}]

• Static checking of actions is possible only with persistent capabilities (i.e.

capabilities with an infinite timeout)

• All the other operations have to be marked (it is impossible to exactly know

when they will be fired)

18

Variations (3 cont.)

Representation of time passing:

• Transitions labeled with time: “Â τ−→” records the passing of τ time units

• Time passes uniformly for all the processes running at a certain node

l ::δ P Â τ−→ l ::δ−τ P
NÂ τ−→N ′ sites(N) ∩ sites(N ′′) = ∅

N ‖ N ′′ Â τ−→ N ′ ‖ N ′′

where δ−τ

1. decreases all the time annotations of capabilities in δ of τ time units

2. deletes the capabilities with expired duration

E.g. l ::[l
′ 7→{i10,o5}] P Â 5−→ l ::[l

′ 7→{i5}]

19

Conclusions

Other works done:

• Finer grained access policies (i.e., different rights over different tuple pat-

terns)

• Authorization (e.g. assigning processes different rights according to the

origin of a migration)

Work in progress:

• Confinement (e.g. regions constraint processes mobility and tuple ex-

change)

• Localities organized in groups and roles

• Behavioural equivalences to relate nets with the same behaviour

Still to be done: A calculus with distribution and cryptography

20

