Resource Access Control

with Dynamic Acquisition

of Access Rights

Daniele Gorla and Rosario Pugliese

Dipartimento di Sistemi e Informatica

Universita di Firenze

MIKADO — Workshop
Firenze, 6th December 2002

Summary I

Overview of KLAIM

uKLAIM: Main Features and Syntax
A Capability Based Type System
Static and Dynamic Typing

Variants and Future Work

KLAIM : An Overviewl

Main Features of past works:

e Asynchronous communication via a shared memory
e Distribution and Mobility

e Remote and Local operations

e F'lat net architecture with dynamic evolution

e Access control via types

— Process type = actions the process intends to perform over the net
— Node type = security policy of the node

— Well-typedness = types of processes do agree with the security policy of
the nodes hosting them

uKLAIM: A core calculus for KLAIMI

We removed: - distinction between logical and physical addresses
(and allocation environments)
- higher order communication
- types with global information
We added: dynamic privileges acquisition
We obtained: - types with only local information
- efficient type handling
- simpler semantics and type systems

The price paid: more run time checks

LKLAIM Syntax'

Nets N == 0 ‘ [:0P ‘ Ny || N2
Processes P = nil ‘ a.P ‘ P | P | A
Actions a == read(T)Q/ ‘ in(7T)Q/ ‘ out(t)Q/

‘ eval(P)Q/ | newloc(u : §)

Templates T = F) ET
Tem.Fields F = f ‘ lx) L @
Tuples t = f | f,t
Tuple Fields f o= e ‘ C:
Expressions e ==V ‘ x |

Types for Resource Access Control (1)'

We control via types the possible operations, i.e. i, 7,0, e, n (capabilities).
II is formed by the non—empty subsets of capabilities

A node is [::° P, where ¢ is the security policy of the node

(i.e. what P can perform once executed in [)
Formally, 0 : Loc — II

For example : [clh=tiok-din(L .)@l is legal
[lh=tioh-l eval(...)@Ql; is not

Welltypedness = no illegal operations at run-time.

Types for Resource Access Control (2)'

Dynamic Acquisition of Privileges:

We want to model a situation like

N 2 sl gn(lu: {0))@lh.out(100)Qu ||
lp =1 out()@l,
Jout, -y lle—{iki—~{o} out(100)@l || Is :l+] nil

i.e. [y grants [y the capability of performing an out at [.

But what if [5 does not own capability o over [?

Pre-Types (1) I

1. In out, each locality is annoted with the capabilities passed.

Ny 2 I == in(lu : {0})@ly.0ut(100)@Qu |

Io 0 out(l: [l — {o,e},l3 — {i}])Ql,

2. When the out is fired, it is verified that the capabilities passed be effectively
owned by the node performing it.

Ny 222 =03 in(lu: {o})@ly.out(100)Qu ||

o 20 out(l: [l — {o,e}, 15 — {i}]) 2 NI
if {o0,e,1} C (1)

Pre-Types (2) I

3. When the communication takes place, it is verified that the capabilities
required in the template are granted by the tuple to the locality performing
the in.

NI slle={ii={ol] out(100)@1 || Iy +:° il

since o € {o, e}

Pre-Types (3) I

It is reasonable to:

e pass all the capabilities owned over a given locality

e pass all the capabilities, except someones

The capabilities really passed can be extablished ONLY at run-time; a pre-type

syntactically expresses only the intentions of passing.

A pre-type is a partial function
p LUlU — ITUII

with finite domain, where TIy 2 {7 :mellu{d} }.

10

Pre-Types (4) I

Examples:
e out(!’ : [l — 7]) passes everything except m

e out(!’ : [l — (}]) passes everything
Pre-types are evaluated before firing the out in order to

e cvaluate the set of capabilities to be passed

e check them against the security policy

11

Static Type Inference (1)'

[LU= n(ly : {o}) @I .out(100)@1
What should we do with it? Two possibilities:

1. statically refuse it

2. delay the decision at run-time

On the contrary, we shall always refuse
[LU= (1 {o})@I.in(100)@Qu
Static type inference :

e action using a variable as target: check that the action respects the decla-

ration of the variable

e action using a locality as target: if the action is not legal, mark it and delay

decision at run-time

12

Static Type Inference (2)'

Definition 1 A net is well-typed if for each node | ::° P there exists P’ s.t.
o~ P > P'.

Intuitively, it says that P can be properly marked (P’) s.t.
e non marked actions in P’ respect policy

e variables are used coherently to their declarations

Definition 2 A net is executable if for each node | ::° P it holds ot~ P > P.

Intuitively, it says that no further markings are needed in order to safely execute
the net.

13

uKLAIM Semantics (Dynamic Typing)'

Evaluating pre-types
Enabling communication

Authorizing migrations

5/}1—,62 > Q/

0 eval(Q)Ql.P || I % Pl Pl = P|Q

Executing marked actions (in-lined reference monitor)

' = loc(a)

cap(a) € 6(1") L0 aP |l Y QN

L:0aP || Q—N

14

Main Results I

Theorem 1 (Subject Reduction) If N is executable and N>—N' then N’

15 executable.
Theorem 2 (Type Safety) If N is executable then N T 1 for nol € loc(N).

where N 71 is the run time error predicate, whose main case is

cap(a) & 6(loc(a))
[:°a.P 11

Corollary 1 If N is executable and N>=—*N' then N’ 11 for nol € loc(N').

The same results hold in a local version, i.e.

Theorem 3 If all the nodes in D C loc(N) are executable and N>—*N" then
N' 11l fornol € D.

15

Variations(1) I

Acquisition by Nodes and Processes: Mobile processes can acquire rights

also for themselves.

e Actions: a:=... |inp(7)Q/¢ | readp(T)Q¢
e Mobile Processes syntactic category: AP ::={{ P }}s
o New capabilities: 7,1,

e The semantics of inp/readp are similar to in/read but the acquisition is
recorded in the process type.

matchy(T[T [s, 5. €t) = (8", o)
L0 {{inp(T)QI.P Y5, | I 20 out(et)=—1:° {{ Po Bssm || 1/ =% nil

16

Variations (2) I

Consumption of Access Rights: Once used, rights are lost.

e Multisets of capabilities.
e In the reductions, types are decreased accordingly to

— the action performed

— the privileges passed

e In migrations, rights are properly split.

=8 Qe Q S P P

L0 {{eval(Q)QU.P W, || I 2" AP—1 0 { P Yy |1 = API{ Q By

17

Variations (3) I

Time Expiration of Access Rights: Capabilities can be assigned a duration:

a privilege is available until the timeout associated to it is not yet expired.

e Capabilities are indexed with a number representing a timeout.
Eg [l — {’1:10, 05}]

e Static checking of actions is possible only with persistent capabilities (i.e.

capabilities with an infinite timeout)

e All the other operations have to be marked (it is impossible to exactly know
when they will be fired)

18

Variations (3 cont.)'

Representation of time passing:

e Transitions labeled with time: “~—" records the passing of 7 time units

e Time passes uniformly for all the processes running at a certain node

N~=5N' sites(N) N sites(N") = 0

N | N" == N"| N”

[P >S50 P

where 0_,

1. decreases all the time annotations of capabilities in 0 of 7 time units

2. deletes the capabilities with expired duration

E.g. [:[F'—lioesi p w2, | [l dis)]

19

Conclusions I

Other works done:

e Finer grained access policies (i.e., different rights over different tuple pat-

terns)
e Authorization (e.g. assigning processes different rights according to the

origin of a migration)

Work in progress:

e Confinement (e.g. regions constraint processes mobility and tuple ex-
change)

e Localities organized in groups and roles

e Behavioural equivalences to relate nets with the same behaviour

Still to be done: A calculus with distribution and cryptography

20

