Mikado
Mobile calculi based on domains

J.B Stefani -- INRIA
Outline

- Objectives
- Domains
- Work programme
- Consortium and figures
- Challenges
Objectives

- To develop formal programming models for large scale, mobile distributed computing
 - In Mikado, “programming model” = “process calculus”
 - In Mikado, programming models to be based on a (hopefully) common “core domain model”
- To develop associated type systems and proof techniques
 - Safety, security
- To develop effective prototypes
 - Abstract machines
 - Language experiments
Domains

- Key insight for Mikado programming models: domains
- Large scale distributed systems take the form of multiple interacting areas or regions, with different properties
 - e.g. spatial location and extent, communications, fault models, security policies, resource management policies
- A domain is a first-class programming entity introduced to capture the notion of region or sub-system
- Insights for domains:
 - Ambients, locations in distributed process calculi
 - Domains, regions and autonomous systems in network architecture
Work-programme

- **WP1 Programming Model**:
 - to develop the Mikado “core domain model” and domain-based programming models; to study their relationships with other programming paradigms (functional, object-oriented)

- **WP2 Specification and Analysis**:
 - to develop type systems and (co-inductive) proof techniques for the Mikado programming models

- **WP3 Virtual Machine Technology & Language Support**:
 - to develop virtual machine and programming language technology based on the Mikado programming model

- **WP4**: management, dissemination and evaluation
Recent results

- Programming models
 - a calculus with programmable domains: the M-calculus
 - process mobility in Ambients: M^3
 - dynamic node connectivity in Klaim
 - lexical scoping in a distributed $\pi: \text{lsd}_\pi$
 - calculi with resource access control: Controlled Ambients and Mobile Resources

- Specification and Analysis
 - dynamic acquisition of resource privileges in Klaim
 - co-inductive characterization of barbed congruence for higher-order π
 - linear types for optimizing code generation in TyCO
Recent results

- Virtual Machines and Languages
 - Klava and XKlaim
 - Object-oriented XKlaim and MOMI (objects and mixins in a distributed setting)
 - Multithreaded distributed abstract machine for DiTyCO
 - Distributed abstract machine for the M-calculus
 - Common software infrastructure for distributed abstract machines
Consortium and figures

- Mikado Partners:
 - INRIA (prime - F) : G. Boudol, JB Stefani
 - France Telecom R&D (F) : M. Lacoste
 - University of Florence (I) : R. de Nicola
 - University of Sussex (GB) : M. Hennessy
 - University of Lisbon (P) : V. Vasconcelos

- Duration : 36 months
- Manpower : 434 mm (360 mm funded)
- Funding : 1.9 M€
Challenges

- To turn the multi-faceted, informal notion of ‘domain’ into a “theory of domains” and effective programming model abstractions
- To show that Mikado’s approach can subsume other recent distributed process calculi and meet key technical requirements for programming global computing systems
- To turn Mikado’s theoretical results into effective (i.e. efficient, practical) programming language technology
For more information

http://mikado.di.fc.ul.pt/