
A Software Framework for Rapid Prototyping of
Run-Time Systems for Mobile Calculi ?

Lorenzo Bettini1, Rocco De Nicola1, Daniele Falassi1, Marc Lacoste2, Luís Lopes3,
Licínio Oliveira3, Hervé Paulino4, Vasco T. Vasconcelos5

1Dipartimento di Sistemi e Informatica, Università di Firenze.
2Distributed Systems Architecture Department, France Telecom R & D.

3Departamento de Ciência de Computadores, Faculdade de Ciências, Universidade do Porto.
4Departamento de Informática, Faculdade de Ciências e Tecnologia, Univ. Nova de Lisboa.

5Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa.

Abstract. We describe the architecture and the implementation of the MIKADO

software framework, that we call IMC (Implementing Mobile Calculi). The
framework aims at providing the programmer with primitives to design and im-
plement run-time systems for distributed process calculi. The paper describes the
four main components of abstract machines for mobile calculi (node topology,
naming and binding, communication protocols and mobility) that have been im-
plemented as Java packages. The paper also contains the description of a proto-
type implementation of a run-time system for the Distributed Pi-Calculus relying
on the presented framework.

1 Introduction

It has been widely argued that mobility will be an important technology for applications
over a global network. The main breakthrough is that global applications may exchange
mobile code [9, 33], not just data. A particular instance of mobile code is the concept of
mobile agents [14, 19, 36]: software units that can suspend their execution and migrate
to new hosts, where they can resume their execution.

The programming paradigm based on mobile agents is different from remote evalu-
ation or code on-demand in that the code does not need to be sent and retrieved explic-
itly: the agent migrates autonomously somewhere else and continues executing there.
An agent is self contained in that it possesses all the data it needs to execute and migrate,
since this information is typically carried with the agent during migration. Decisions of
executing and moving are taken according to information supplied by the programmer
of the agent. Agents may also autonomously decide to take different choices due to con-
textual events such as, temporary unavailability of networks or not responding hosts.

Dealing with mobile code and mobile agents raises a number of issues such as:
packing of moving agents, security, protocols, naming, network architecture. We are
developing a generic framework called IMC (Implementing Mobile Calculi) that can

? This work has been funded by EU-FET on Global Computing, project MIKADO IST-2001-
32222. The funding body is not responsible for any use that might be made of the results
presented here

be used as a kind of middleware for the implementation of different mobile program-
ming systems. Such a framework aims at being as general as possible. It can be, and
indeed has been, used to implement existing systems (KLAVA [5], Safe Ambients [32],
JCL [12] and DITYCO [26]) on top of it. But it also provides the necessary tools for
implementing new languages directly derived from calculi for mobility.

The implementer of a new language would need concentrating on the parts that are
really specific of his system, while relying on the framework for the recurrent standard
mechanisms. The development of prototype implementations should then be quicker
and the programmers should be relieved from dealing with low level details.

For the sake of dissemination and portability, the framework is being developed as
Java packages. Thus, the used virtual machine technology is the one based on the Java
Virtual Machine. This choice is also motivated by the fact that most existing mobile
code systems are based on Java.

The proposed middleware framework aims at implementing (or, at least, specify-
ing) all the required functionalities for arbitrary components to communicate and move
in a distributed setting. Four abstractions have been isolated as being fundamental to
this goal and each of them has been implemented as a sub-package of our IMC Java
package:

– node topology
– naming and binding
– communication protocols
– mobility

The purpose of the sub-package for Node Topology is to describe the encoding
of the topological structure of the network and to take into account the effect of dis-
tributed computations performing changes in its overall structure. Its main components
deal with primitives for connection and disconnection, node creation and deletion, do-
main specific node coordination (membrane, guardian, etc.), node-based decentralized
topology and actual implementation of nodes and node naming.

The purpose of the sub-package for Naming and Binding is to define a uniform
way to designate and interconnect the set of objects involved in the communication
paths between computational nodes. We call such a set of objects a binding. Its main
components are designed to deal with primitives for name creation and deletion, typ-
ing and compatibility checking, policies for name resolution (static, dynamic, mixed,
bindings, ...) and name marshalling and un-marshalling.

The purpose of the sub-package for Communication Protocols is to identify both
the abstractions and the primitives for logical and physical node connectivity, as well as
the strategies that can be used to capture and perform communications between compu-
tational nodes. Its components are designed to deal with abstract, possibly secure, send
and receive primitives, marshalling of messages at network level, session management,
connection checking and multicasting.

The purpose of the sub-package for Code Mobility is to provide the basic func-
tionalities for making code mobility transparent to the programmer; all issues related
to code marshaling and code dispatch are handled automatically by the classes of the
framework. Its components are designed to deal with object marshalling, code migra-
tion, and dynamic loading of code.

The general aim of the framework is to assist both the designer and the programmer
of a virtual machine or run-time system implementing a domain-based programming
model. The four components of the framework are connected and cooperate in order
to implement the abstract representation of a distributed application with mobile code.
Thus, for instance, the �������������
	 package relies on the �
�������������� package to actu-
ally communicate over the network and the ���������������� package, in turn, relies on the
� �����������
	 package to create packets containing migrating code, and so on. We observe
that these cooperations are made through interfaces and abstract classes. Nonetheless,
IMC already provides concrete implementations for the standard and most used func-
tionalities that should fit most Java mobile framework requirements (e.g., Java byte-
code mobility and TCP/IP sockets).

The user of the IMC package can then customize parts of the framework by provid-
ing its own implementations for the interfaces used in the package. In this respect, the
IMC framework will be straightforward to use if there is no need of specific advanced
features. Nevertheless, the frameworks is open to customizations if these are required
by the specific mobility system one is willing to implement. For example, the TYCO
system makes use of its own code dispatch strategy and overrides the standard Java byte-
code mobility. Customization of the framework can be achieved seamlessly thanks to
design patterns such as factory method and abstract factory [13] that are widely used
throughout the package.

The above mentioned sub-packages have been developed over the mikado sites by
taking advantage of CVS server organized as a single project ���
��� � ������������� � � struc-
tured with four tasks:

– ������ � ������������� � ��� �
�����
����
	

– ������ � ������������� � ���"!�� � �#!
�

– ������ � ������������� � ���"��������������
�

– ������ � ������������� � ��� � �����������
	

The rest of the paper contains the detailed description of the four sub-packages and
ends with an experimental implementation of Dπ, the only model considered within the
Mikado project that has not yet been implemented.

2 Node Topology

The purpose of this part of the framework is to describe the encoding of the topological
structure of the network and to take into account the effect of distributed computations
performing changes in its overall structure.

Motivation

The notion of node appears in most existing implementations of mobile calculi, such as,
e.g., [4, 5, 12, 32, 34]. However, the internal structure of the node itself is programming-
model specific. The computational nodes can include data structures ranging from
definitions (TYCO, JCL/JOCAML, CLAM), processes (X-KLAIM/KLAVA, TYCO,

SAM, JCL/JOCAML, CLAM) channels (TYCO, SAM, JCL/JOCAML, CLAM), ob-
jects (TYCO) and tuple spaces (X-KLAIM/KLAVA).

From this observation we designed the Node Topology package so that it would
provide both a programming abstraction and a generic concrete implementation for
a node whilst not providing any details of the specific implementation of the virtual
machine that will run on it.

Another common property of the current mobile calculi implementations is that the
nodes are designated to use some form of unique identifier. It is noteworthy that the
structure of the node identifier is itself implementation specific. Also, node identifiers
must be created dynamically when new nodes are added to a network.

Thus, we require the Node Topology framework to provide both an abstraction for
a node identifier that encapsulates its implementation details and, some mechanism to
create fresh node identifiers in accordance with some implementation-specific format.

In the existing implementations of mobile calculi, the topological organization
of nodes is either hierarchical, i.e., tree-structured, or flat. For example, SAM,
JCL/JOCAML, X-KLAIM/KLAVA and CLAM use a tree-structured topology of nodes,
while TYCO nodes are organized according to a flat structure. Primitives for express-
ing a topological hierarchy of nodes can easily be used to reflect a flat organization
of nodes by adding a root (virtual) location whose children are the given nodes. Thus,
we feel that the framework should support hierarchical node composition patterns. This
in turn implies providing tools to navigate through the network hierarchy and retrieve
information about its structure.

Finally, some process calculi have reduction rules that imply adding new nodes to
the hierarchy or removing existing nodes (or moving them). This can be due to the
strict implementation of the reduction rules, or to new components dynamically being
introduced into a running system. Thus, the Node Topology framework should provide
primitives to add new nodes to the network hierarchy or to remove existing nodes.

Design

The above requirements lead to the following design for the Node Topology sub-
package in the form of Java interfaces. Concrete and generic default implementations of
these interfaces are also provided in the sub-package and named by prefixing the inter-
face name with � �������� (e.g., a default implementation for interface � ���� is provided
by the class � ��������� � �����).

interface NodeIdentifier {
public Object getIdentifier();

}

interface Node {
public String getNodeName();
public NodeIdentifier getNodeIdentifier();
public Object getImplementation();
public NodeIdentifier getParentNode();
public NodeIdentifier [] getChildNodes();
public void connect(NodeIdentifier nodeId);

public void disconnect();
public Registry getRegistry();

}

The � ��� � � ����!
� ��� � ��� interface defines a generic way to identify a computational
node component. Implementation-specific node identifiers may be obtained by design-
ing specific classes implementing that interface. The � ����� interface describes the basic
computational nodes which may also be called location, site or agent, according to the
underlying programming model. It contains a reference to its node identity interface, as
well as a reference to an object holding the internal implementation of the node. That
particular structure is implementation specific, and is not part of the Node Topology
sub-package.

The requirements of a hierarchical network topology and support for editing such a
hierarchy lead to the introduction of topology management functionality directly within
the � ����� interface. Thus, the methods � ������� ��!
� � �������	� and � ���
� ���� � ��������	�

allow a node to inspect its network neighborhood. The methods ����!
! ��� ���	� and
� ���
����!�! ��� ����� handle a node’s connection to a specific point (as a sub-node) of the
hierarchy and its disconnection when leaving the network or migrating to another point
in the hierarchy.

The method ������ �� ��� �
�
	��	� provides access to a node’s table of exported re-
sources (e.g., channels) and will be further commented when describing the Naming
and Binding sub-package.

A special node in a Mikado Network, the � ������
��� ���� �� , acts as a portal where
all nodes adhering to a computation must first register. The � �������
��� ����� �� han-
dles the mappings between nodes and their physical locations (e.g., IP addresses) in
a Mikado Network. The network server accepts different implementations and network
configurations that can be specified at startup by providing an implementation for the
interface � ������
��� ���� �� � � ��� and a class holding the network configuration called
��� ���������! � ��� . These settings and the current server handle can be obtained through a
set of methods (� �� � � � ���	� , � ���� ���� �����	� and � ���
���!�� �����	�).

class NetworkServer {
NetworkServer(String [] args);
static NetworkServer getServer();
static NetworkServerImpl getImpl();
Preferences getConfig();
...

}

Examples

IMC’s ������������
	 revolves around the interface � ����� . This interface represents a run-
ning instance of a virtual machine and includes a set of operations that manipulate that
same VM instance. To enforce interoperability between the different virtual machines
that may end up subclassing IMC, a base implementation for the interface � ���� has
already been provided, in the form of the � �������
� � ����� class.

In TYCO, the abstraction for a node in a network is implemented by a class
����� � . Since � ��� � cannot subclass any other class (it already subclasses TYCO’s
� 	�
���� ���
������� � ��� ��� ! � class and Java does not allow multiple inheritance), we cre-
ate a wrapper class,

� 	�
�� � ����� , that holds an instance of the
� 	�
���� ����������� � ��� � �#! �

class.

public class TyCONode extends MikadoNode implements ... {
Object virtualMachine;
TyCONode (String name, Object virtualMachine) {

super(name);
this.virtualMachine = virtualMachine;

}
public Object getImplementation() {

return this.virtualMachine;
}
...

}

To create a new node running a TYCO virtual machine and add it to a network of
running nodes one has to create a new instance of the class

� 	�
�� � ��� � supplying the
node’s name and the virtual machine running in it. To attach/detach the node to/from
the network we need only to call the superclass’ (� �������� � ��� �) methods: ����!
! ��� ���	�

and � ���
����!�! ��� ����� .

public class NodeManager {
...
void newNode(String name, Assemble assembly) {

TyCOVirtualMachine virtualMachine = new TyCOVirtualMachine(name, assembly);
TyCONode node = new TyCONode(name, virtualMachine);
node.run();
node.connect();

}
...

}

We assume the existence of a ����!
! ��� ���	� wrapper in the
� 	�
�� � ��� � that skips the

� ����� � � ��!�� ��� � �� argument and automatically connects the new TYCO node to the
� ����������� ������� that serves as the root of the flat network topology of the TYCO net-
work.

An additional, optional, step is the inclusion of a
� ����������
	�� ������� ���
	 � ��!���� �� ,

which controls access to � �������
� � ����� ’s functionality. It allows an operation
to be blocked or allowed, based on any desired security policy. The default
� �����������
	�� ���	��� ���
	 � ��!������ for TYCO would enforce rules such as: a node can only
connect to the � �������
��� ����� �� (its parent) and that it cannot accept connections (since
the topology is flat).

The IMC infrastructure already contains a � ��������
��� ���� ��� that handles the map-
pings between the node names and their physical location in a network. This enables a
straightforward implementation of the TYCO’s Name Server by using it as the virtual
root of the TYCO flat network topology and extending the class with functionality for
registering and type-checking top level exported channels.

3 Naming and Binding

The purpose of this part of the framework is to define a uniform way to designate and
interconnect the set of objects involved in the communication paths between computa-
tional nodes. We shall call such a set of objects a binding.

Motivation

The fundamental concept to be provided by this sub-package is that of a referenceable
object. Such an object is an abstraction for the fundamental communication peers in
process calculi such as channels or definitions. A referenceable object is always as-
sociated with a unique network-wide identifier. Each resource identifier is uniquely
associated with a naming context in a network.

A feature common to current mobile calculi implementations is the use of the ex-
port/bind programming pattern to make objects available in a network and to get an
access path for such objects. This pattern is so pervasive that the Naming and Binding
sub-package provides a registry abstraction that, for a given managed name, should be
able to make it available to the network by registering it and to create an access path to-
wards the object designated by that name. Thus, the registry is responsible for keeping
the mappings between identifiers and referenceables for a given node in a network.

The above considerations offer a generic and uniform view of bindings, clearly
separating object identification from object access.

Design

We now describe a minimal set of interfaces for dealing with naming and binding based
on the above requirements:

public interface UID {
public NamingContext getContext();
public String getName();
public String getEncoded();
public NodeIdentifier getNodeIdentifier();
public String toString();

}

public interface NamingContext {
public String getName();

}

The � ��� interface represents the generic notion of a network wide unique identifier
used to designate some object relatively to a given naming context, such as a channel
in process calculi. Identifiers are implementation dependent. The interface contains a
reference to its naming context. The � � � �#!��
���!������
� interface represents a set of
�������� ��! � �
����� � (see below) objects in a Mikado Network that is identified by a string.

public interface Referenceable {
public NamingContext getContext();

public UID getUID();
public void handleData(ProxyRequest request);
public void marshall();
public void unmarshall();

}

The � ������� ��! � ����� � � interface must be implemented by any object in a Mikado
Network that is to be exported and bound during a computation. The ����!���� � � ����� �	�

method is used to receive requests from object proxies (�
��� �
) elsewhere in the net-
work. The � �� � �����
� �	� and �
! � ��� � ���������	� methods can be used, respectively, to pre-
pare a reference for network dispatch and to restore a reference after traveling through
the network. These methods typically call a � �� � ���
�
� �� implementation from the
�
�������������� sub-package to perform some level of packing/unpacking (see Section 4).

public abstract class Proxy {
private UID uid;
protected Proxy(UID uid);
public UID getUID();
public abstract void dispatch(Serializable request);
public abstract void marshall();
public abstract void unmarshall();

}

public interface ProxyRequest {
public abstract NodeIdentifier getPeer();
public abstract UID getUID();
public abstract Serializable getRequest();

}

The �
�����
	 interface describes the functionality associated with a proxy for a ref-
erenceable object. The method � ������� � � �	� handles communication by redirecting it
to the corresponding referenceable object. Methods � �� � ���
�
���	� and ��! � �� � �����
�����

have similar functions to the referenceable side. The interface �
�����
	�� � � � ��� � allows a
referenceable object to obtain basic topological and naming information about a proxy
sending data from another node and the data itself.

public interface Registry {
public void export(Referenceable ref);
public void unexport(Referenceable ref);
public Proxy bind(NodeIdentifier id, String name, NamingContext context);
public Referenceable getRef(UID uid);
public Referenceable [] getAllRefs();

}

Object access is provided for by the interface � ��� ��� �
��	 which must be imple-
mented by any class that exports or binds objects in a Mikado Network. The interface
includes the �������
����� method to create a new name in a given context and make it
bindable in a network. The ��! ���������
���	� method cancels an ��������
� operation by mak-
ing an identifier no longer valid within a naming context. In other words, the map-
ping identifier-referenceable object designated by that identifier is broken. The ���#!����	�

method returns a local Proxy associated with a given Referenceable object at a node � � ,
with a given !�� � � and naming context ����!�� � �
� . This Proxy allows direct communica-
tion with the proxy for the Referenceable object in the Mikado Network.

All the required communication between referenceable objects and their proxies is
provided via the protocols sub-package of the framework.

Examples

A default implementation of some of the � � � �#!�� and � ��!�� ��!�� package inter-
faces (�
��� �
	 , �
�����
	�� � � � ��� � , � � � �#!���
���!
� ���
� and � �� �� �
�
) is already pro-
vided in IMC (� �������
��
������	 , � ����������������
	���� � � ��� � , � �������� � � � ��!���
���!
� � �
� and
� ��������� � �� �����
�
	 , respectively).

The fundamental step in implementing TYCO on the IMC framework is the realiza-
tion that TYCO’s referenceable objects are instances of the class
����!
! ��� . Also, given
the flat topology of TYCO networks, the implementation requires only a single naming
context identified by the string � �
	 ��� � .

In this approach, we make each exported TYCO channel in a running virtual ma-
chine implement the Referenceable interface and allow other nodes in the network to
communicate with it directly by using proxies through the �
�����
	 interface. The most
important method in this implementation is ����!���� � � ���� ��� . This method handles proxy
requests to the channel from proxies elsewhere in the TYCO network. The incoming
requests, messages or objects are either enqueued in the channel queue or reduced im-
mediately if an adequate message-object redex forms.

public class Channel extends ... implements Referenceable {
...
public void handleData(ProxyRequest request) {

// unpack the request and check whether it is an object or a message
Frame frame = unpack(request.getRequest());
// run code according to case
if(status == 0) { // channel is empty

enqueue(frame);
if (frame.isObject())

status++;
else

status−−;
} else if (status < 0) { //channel has messages

if (frame.isObject()) {
Frame message = dequeue();
reduce(frame, message);
status++;

} else {
enqueue(frame);
status−−;

}
} else if (status > 0) { // channel has objects

if (frame.isObject()) {
enqueue(frame);

status++;
} else {

Frame object = dequeue();
reduce(object, frame);
status−−;

}
}

}
...

}

TYCO represents channels in a distributed computation in two distinct formats re-
flecting their current position relative to their lexical bindings. A local channel to a node
is represented as a JVM heap reference. A remote channel is represented in a network
format containing information about the node (its name) it originated from and its local
reference there. When, say, a message is sent to a channel in a program running at some
node of a TYCO network, the internal representation of the channel is first checked
to see if the channel is local to the node or if it is a remote channel. If the channel is
remote, a ����!�� operation is required to get a proxy to handle remote interaction. Thus,
a TYCO Virtual machine instruction to handle message delivery would look like this:

void sendMessage(Channel channel, Label label, Value[] args) {
if (channel.isLocal()) {

// code for local handling, similar to above code for handleData()
...

} else {
// get a proxy object for communication with the real channel
UID uid = channel.getUID();
NodeIdentifier nodeId = uid.getNodeIdentifier();
String name = uid.getName();
NamingContext context = uid.getContext();
Proxy proxy = getMikadoNode().getRegistry().bind(nodeId, name, context);
// pack message in a Serializable object and send it to the channel
SerializablePacket packet = new SerializablePacket(channel, label, args);
proxy.dispatch(packet);

}
}

Exporting and importing top-level channels in TYCO involves two operations in
the TYCO Virtual Machine that interacts with the NetworkServer. When we ����������

one channel from a node we make its access information available to other nodes in the
network. Such an operation might be implemented using the above abstractions as:

void export(Channel channel) {
getMikadoNode().getRegistry().export(channel);

}

The complementary operation in which we � � ������ a top-level channel from some
node in a TYCO network requires the name of the channel being requested and the
node it resides in. The operation simply requests a proxy for the remote channel based
on the name of the channel and of the node:

Proxy import(String node, String name) {
NodeIdentifier nodeId = getMikadoNode().resolve(node);
NamingContext context = new TycoNamingContext();
return getMikadoNode().getRegistry().bind(nodeId, name, context);

}

4 Communication Protocols

This part of the IMC framework intends to identify the primitives and the communica-
tion strategies for logical and physical node connectivity. The general aim is to assist the
architect of a run-time system for a distributed process calculus in the implementation
of new communication protocols between computational nodes.

Motivation

Existing implementations [3] of some common distributed process calculi [6] are char-
acterized by a flurry of communication protocols and of programming languages. In
first approximation, the protocols can be split into two families: high-level protocols
such as Java RMI are well integrated with the Java Virtual Machine environment and
take advantage of the architectural independence provided by Java (SAM [32] im-
plementation of Safe Ambients [25]); protocols closer to hardware resources such as
TCP/IP are accessible, either directly in Java (X-KLAIM/KLAVA [5]) or in other pro-
gramming languages allowing easier manipulation of system resources such as OCaml
(JCL [12] and JOCAML [24]) or C (DITYCO [26]). Marshalling strategies range from
dedicated byte-code structures (JCL, JOCAML, DITYCO) to Java serialization (SAM,
X-KLAIM/KLAVA).

Thus, a generic communication framework to build prototype implementations of
process calculi cannot restrain itself to a fixed set of interaction primitives or mar-
shalling strategies. Instead, a middleware like IMC should be flexible enough to support
multiple marshalling strategies and communication protocols. The framework should
also aim at minimality to introduce new communication protocol support with little
effort, in any case without need to re-implement a new communication library: either
by realizing specialized implementations of the framework interfaces, or by defining
framework increments which will complement the IMC core interfaces and libraries.

A number of minimal platforms for flexible communications have already been im-
plemented [10, 11, 15, 18, 20, 28] where objects interact transparently through remote
method invocations on well-defined interfaces. Their originality compared to CORBA-
like or Java RMI-based infrastructures is to provide a core framework for building dif-
ferent types of middleware using the notion of flexible bindings. Creating a new binding
should be understood as setting up access and communication paths between compo-
nents of a distributed system with a wide variety of semantics: mobile, persistent, with
QoS guarantees, etc. An adaptable communication framework should provide primi-
tives to define bindings with various semantics, and to combine them in flexible ways.
With simple architectural principles such as separating marshalling from protocol im-
plementation, or threading from resource management, those middleware have shown

how to dynamically introduce new protocols or control the level of resource multi-
plexing. In the IMC communication framework design, an important decision was to
leverage the previously described naming and binding framework for network proto-
cols in order to achieve adaptable forms of communication transparency needed when
implementing a specific process calculus. The communication framework enables the
definition of customized protocol stacks by a flexible composition of micro-protocols.
In practice, the implementation of a new process calculus will most likely use TCP/IP
as lowest layer of interface to the network. Thus, the IMC communication framework
provides support for TCP/IP bindings, but can be easily extended to other protocols.

The IMC communication framework is composed of two main sub-packages:

– Sub-package ��
��� � ��������� ��� � ��� ������
��������� � � ����� contains the interfaces de-
scribing the main abstractions for communication, e.g. sessions, protocols, mar-
shallers, . . .

– Sub-package ������ � ������������� � ���"��������������
��� ���#� � contains the classes which im-
plement those interfaces and offer support for flexible TCP/IP bindings.

In what follows, we describe the main abstractions and interfaces of the IMC com-
munication framework. We then illustrate over a simple example – a small client/server
authentication protocol called “knock-knock” – how protocol and session objects can
be combined to implement new communication protocols taking advantage if IMC.

Design

The communication framework builds upon the IMC abstractions for naming and bind-
ing such as identifiers, references, and naming contexts. Protocol-specific abstractions
are inspired from the x-kernel [17] and JONATHAN [20] communication frameworks
and are represented by the interfaces below:

public interface Protocol {}

public interface ProtocolGraph {
public SessionIdentifier export(Session_Low session);

}

public interface SessionIdentifier {
public Protocol getProtocol();
public Session_High bind(Session_Low session);

}

public interface Session_High {
public void send(Marshaller message);

}

public interface Session_Low {
public void send(UnMarshaller message, Session_High session);

}

A protocol represents network protocols like TCP, IP, or GIOP, and provides a nam-
ing context for a particular kind of interfaces called sessions. It manages names called
session identifiers to designate those interfaces.

The structure of a protocol stack is captured by a protocol graph. This directed
acyclic graph composed of protocol nodes describes the path to be followed by mes-
sages when they are sent over the network, or received. A given session can be exported
to inform the communication layers that it is willing to accept messages: a call on the� ������
� method at the root of a protocol graph will issue recursively the appropriate
calls on each node of its sub-graphs. A session identifier is then returned to designate
the exported session. To communicate with the exported session, a client just needs to
call the � ��!�� method on the returned session identifier, which will provide a surrogate
the client can use to send messages to the exported server session.

A session is an abstract representation of a communication channel. A session object
is dynamically created by a protocol and lets messages be sent and received through
the communication channel it stands for using that protocol. It has higher and lower
interfaces to send messages down and up a protocol stack which may be viewed as a
stack of sessions.

Exported session objects are designated using session identifiers. Their internal
structure is protocol-specific. For instance, a TCP/IP session identifier encapsulates a
host name and port number. Session identifiers are created when exporting a server-side
session and then transmitted over the network. On the client side, they allow to estab-
lish communication channels by invoking the ����!�� operation, with an optional session
parameter to receive messages sent by the remote server-side session.

Sessions and Connections Messages can navigate through a protocol stack using the
session interfaces (� ����������!���� ����� and � ���
�
����!����
� �) with a single method to perform
the message sending operation. A � ���
������!���� ���� object is used to send messages down
to the network. It will usually be a surrogate for a � ���
�
����!����
� � type of session, which
has been exported to a �
����������
� instance and is designated by a � ����������! � ����!�� � � � ���

interface. A � ����������!���� ����� instance may be obtained by invoking the ����!�� operation
on a session identifier representing a � ���
������!������ � interface: it is thus a surrogate, or
a proxy, for that interface. A � ���
�
����!����
� � object is used to forward messages coming
from the network to their actual recipient. � ���
������!������ � is also the type of interfaces
exported to protocols, and designated by session identifiers. The additional parameter
in the � ��!�� method represents the sender, and may be used to send a reply, if necessary.

Each session contains a lower-level abstraction of a communication channel called
a connection. It typically encapsulates a regular socket, and provides operations to read
and write to the socket. Client-side or server-side connections may be built on demand
using connection factories, for instance on an incoming connection request from a
client. A connection manager keeps track of idle and active connections, and delegates
the creation of new connections to a connection factory.

To facilitate concurrent programming within sessions, the framework also offers ba-
sic primitives for activity management and their scheduling according to various criteria
such as priorities, deadlines, etc.

Marshalling Marshallers and unmarshallers are used as high-level and encoding-
independent representations of messages that are about to be sent or received. The
� �� � ���
�
� �� interface is described below:

public interface Marshaller {
public void writeBoolean(boolean b);
public void writeChar(char c);
...
public void writeReference(Object obj);
public void writeCode(MigratingCode code);
public boolean isLittleEndian();
public void close();

}

The � ! � �� � �����
� �� interface is similar but with read instead of write operations.
The communication framework allows to customize the marshalling and unmarshalling
of messages, by including interfaces for the management of chunks, or fragments of
byte arrays which are chained together to form messages. The use of chunks helps
avoiding unnecessary copying of memory blocks when messages move up and down
a protocol stack. In particular, ��� ��� �
������ and � �
���
������ are used to implement code
mobility and rely on the sub-package � �����������
	 described in Section 5.

Implementation The IMC communication framework provides TCP/IP-level binding
management mechanisms: the main classes implement the TCP/IP protocol, standard
marshallers, TCP/IP connection managers, as well as standard chunk managers, sched-
ulers, and distributed naming contexts [22].

An Example

We now show how to use the IMC communication framework to implement new net-
working protocols. Consider the following simple protocol called “knock-knock”, for
authentication between a client C and a server S:

1 Connect Request C → S: Connect
2 Connect Reply S →C: Knock-knock
3 Authentication Request C → S: Who’s there?
4 Authentication Reply S →C: Challenge e.g. � ���
�

5 Confirmation Request C → S: Challenge who? e.g. � ���
� who?

6 Confirmation Reply S →C: Response e.g.

[

� ���
� 	���� � �� � � ��!��
� ��� � ������ � ��� � �� ���

This protocol can be easily implemented using the IMC communication framework
over TCP/IP bindings by a set of session and protocol objects shown in Figure 1. The
client first asks the user for the server host name and TCP port number. The TCP/IP
stack is initialized by creating a new instance of the

� ��� � ���
������������ class and a new
client session identifier with the given parameters. The communication channel is estab-
lished by a � ��!�� call on this identifier. The returned � ���
������!���� ����� object can later be
used to send messages over the network: the Connect message is first sent. The client
then waits for replies from the server. The “knock-knock” client is given by:

STDIN

TcpIpProtocol.CltSession

KnockKnockClientSession

TcpIpProtocol

KnockKnockClientSession.send() CltSession.send()

TcpIpProtocol.send()
TcpIpProtocol TcpIpProtocol.SrvSession

KnockKnockServerSession

TcpIpProtocol.send()

NETWORK

SrvSession.send()

KnockKnockServerSession.send()

KnockKnockProtocol

KnockKnockProtocol.send()

Fig. 1. Session and Protocol Objects in the “Knock-Knock” Protocol.

public class KnockKnockClient {
public static void main(String[] args) {

// Ask the user for the hostname and port number to connect to
...
// Instantiate TCP/IP protocol stack
TcpIpProtocol protocol = new TcpIpProtocol(...);
IpSessionIdentifier id = protocol.newSessionIdentifier(hostname, port);

// Bind to remote TCP/IP session
Session_High session = id.bind(new KnockKnockClientSession(System.in));

// Send "CONNECT" message
Marshaller connectMsg = IMCMarshallerFactory.newMarshaller();
connectMsg.writeString(� ���������
	�� �); session.send(connectMsg);

// Wait for replies from the server
...

}
}

The top-level session object in the Knock-Knock/TCP/IP stack is a !������ !��������

���� ��!���� ���
��� ��! which directly reads data from standard input. When a message is
received from the network, the “knock-knock” session � ��!�� method is called. The mes-
sage content is then displayed on the standard output device. Any message typed on the
standard input device will be forwarded to the TCP/IP session which will send it over
the network:

class KnockKnockClientSession implements Session_Low {
...
public void send(UnMarshaller message, Session_High tcp_session) {

// Read message from Knock−Knock server
String fromServerMsg = message.readString();
System.out.println(������� ����������� � + fromServerMsg);

// Get user input

System.out.print(� ��� � ��� ���
��� �); fromUserMsg = System.in.readLine();

// Send user input to Knock−Knock server
Marshaller toServerMsg = IMCMarshallerFactory.newMarshaller();
toServerMsg.writeString(fromUserMsg); tcp_session.send(toServerMsg);

}
}

The “knock-knock” server begins by creating a protocol graph composed of two nodes,
instances of the

� ��� � ���
������������ and !������ !��������
������������ classes. It then waits for
client invocations:

public class KnockKnockServer {
public static void main(String[] args) {
...
// Create Knock−Knock/TCP/IP protocol stack
TcpIpProtocol protocol = new TcpIpProtocol(...);
protocol.newProtocolGraph().export(new KnockKnockProtocol());

// Wait for invocations
...

}
}

A “knock-knock” protocol object maintains a set of “knock-knock” sessions. Each ses-
sion is associated with an underlying TCP/IP session in a hashtable, in order to record
the path messages should follow in the protocol stack. When exporting the “knock-
knock” protocol, a TCP/IP server-side session is created containing a new server socket
to listen for connection requests from clients. When a client connects, the TCP/IP
session reads all messages from the network and forwards them to the higher-level
 !���� � !���� ������������ ��� instance: the � ��!�� method of that class is called, passing as a
parameter the TCP/IP server session for sending back replies to the network. A new en-
try in the hashtable is created, associating the TCP/IP session with a new “knock-knock”
session where message processing will be performed. Control is then transferred to the
� ��!�� method of the “knock-knock” session:

class KnockKnockProtocol implements Session_Low {

Hashtable kk_sessions; // A pool of session objects
...
// Send back reply to the message coming from the network
public void send(UnMarshaller message, Session_High tcp_session) {

// Determine the TCP/IP session to use
KnockKnockServerSession kk_session = null;
synchronized (this) {

kk_session = (KnockKnockServerSession) kk_sessions.get(tcp_session);
if (kk_session == null) {
kk_session = new KnockKnockServerSession(this);
kk_sessions.put(tcp_session, kk_session);

}

}
// Send the reply message on the network
kk_session.send(message, tcp_session);

}
}

The “knock-knock” session simply determines the correct message to send back to
the TCP/IP session, based on the message received from the client, and following the
“knock-knock” protocol. The TCP/IP session then sends the message over the network:

class KnockKnockServerSession {
...
int state = WAITING; // State of the protocol

// Protocol messages : challenges and responses
static String challenges[] = { ��� � � � � , ... };
static String responses[] = { ��� � � ��� ��� � ����� � � �
	 � ���� 	�� ��� ���
���
������� � , ... };
int ChallengeNumber;

// Perform ‘‘knock−knock’’ protocol message processing
public void send(UnMarshaller message, Session_High tcp_session) {

String fromClientMsg = message.readString();
switch(state) {

case WAITING:
if (fromClientMsg.equals(� ��� �����
	 � �)) {

toClientMsg = ��� � ��	�� � � ��	���� � ; state = SENT_KNOCK_KNOCK;
} else state = ERROR;
break;

case SENT_KNOCK_KNOCK:
if (fromClientMsg.equals(��� � ���� ��������� � �)) {

challengerNumber = random(MAX_CHALLENGES);
toClientMsg = challenges[challengeNumber]; state = SENT_CHALLENGE;

} else state = ERROR;
break;

case SENT_CHALLENGE:
if (fromClientMsg.equals(challenges[challengeNumber] + ��� ��� � �)) {

toClientMsg = responses[challengeNumber]; state = WAITING;
} else state = ERROR;
break;

case ERROR:
tcp_session.close(); state = WAITING;
break;

}

// Send reply message on the network
if (state == WAITING) {

Marshaller reply = IMCMarshallerFactory.newMarshaller();
reply.writeString(toClientMsg); tcp_session.send(reply);

}
}

}

5 Code Mobility Management

The purpose of this part of the framework is to provide the basic functionali-
ties for code mobility. All these functionalities are implemented in the sub-package
���
��� � ������������� � ��� � ��� �������
	 . This package defines the basic abstractions for code
marshalling and unmarshalling and also implements the classes for handling Java byte-
code mobility transparently.

Motivations

The base classes and the interfaces of this package abstract away from the low level
details of the code that migrates. By redefining specific classes of the package, the
framework can be adapted to deal with different code mobility frameworks. Nowadays,
most of these frameworks are implemented in Java thanks to its great means and features
that help in building mobile code systems. In many of these systems, the code that is
actually exchanged among sites is Java byte-code itself. For this reason, the concrete
classes of the framework deal with Java byte-code mobility, and provide functionalities
that can be already used, without interventions, to build the code mobility part of a
Java-based code mobility framework.

When code (e.g., a process or an object) is moved to a remote computer, its classes
may be unknown at the destination site. It might then be necessary to make such code
available for execution at remote hosts; this can be done basically in two different ways:

– automatic approach: the classes needed by the moved process are collected and
delivered together with the process;

– on-demand approach: the class needed by the remote computer that received a pro-
cess for execution is requested to the server that did send the process.

We follow the automatic approach because it complies better with the mobile agent
paradigm: when migrating, an agent takes with it all the information that it may need
for later executions. This approach respects the main aim of this sub-package, i.e., it
makes the code migration details completely transparent to the programmer, so that he
will not have to worry about classes movement. Our choice has also the advantage of
simplifying the handling of disconnected operations [29]: the agent owner does not have
to stay connected after sending off an agent and can connect later just to check whether
his agent has terminated. This may not be possible with the on-demand approach: the
server that sent the process must always be on-line in order to provide the classes needed
by remote hosts. The drawback of this approach is that code that may never be used by
the mobile agent or that is already provided by the remote site is also shipped; for this
reason we also enable the programmer to choose whether this automatic code collection
and dispatching should be enabled.

With the automatic approach, an object will be sent along with its class binary code,
and with the class code of all the objects it uses. Obviously, only the code of user

defined classes has to be sent, as the other code (e.g. Java class libraries and the classes
of the MIKADO framework) has to be common to every application. This guarantees
that classes belonging to Java standard class libraries (and to the IMC package) are
not loaded from other sources (especially, the network); this would be very dangerous,
since, in general, such classes have many more access privileges with respect to other
classes.

Design

The package defines the empty interface � ���
����� ��!���

����� that must be implemented by
the classes representing a code that has to be exchanged among distributed site. This
code is intended to be transmitted in a � �������� ��!
������� ���� , stored in the shape of a ��	
� �

array:

public class MigratingPacket implements java.io.Serializable {
public MigratingPacket(byte[] b) {...}
public byte[] getObjectBytes() {...}

}

How a � �������� ��!
��
������ object is stored in and retrieved from a � ���
���� ��!�������� � ���

is taken care of by the these two interfaces:

public interface MigratingCodeMarshaller {
MigratingPacket marshal(MigratingCode code) throws IOException;

}

public interface MigratingCodeUnMarshaller {
MigratingCode unmarshal(MigratingPacket p)

throws InstantiationException, IllegalAccessException,
ClassNotFoundException, IOException;

}

These marshaller objects are used also by the classes of the �
�������������� package
(see Section 4). In particular the � �� � ���
�
� �� and � ! � ��� � ������� �� in the package
�
�������������� rely on instances of � ���
���� �#!���
���� � � ��� � ������ ��� and � ���
���� �#!���
���� � �
� ! � �� � �����
� ��� , respectively, to deal with � ���
���� ��!�������� ���� � s.

Starting from these interfaces, the package � ��� �������
	 provides concrete classes that
automatically deals with migration of Java objects together with their byte-code, and for
transparently deserializing such objects by dynamically loading their transmitted byte-
code. These classes are described in the following.

Java byte-code mobility All the nodes that are willing to accept code from remote
sites must have a custom class loader: a � ������
�����
������������ supplied by this MIKADO

sub-package. When a remote object or a migrating process is received from the net-
work, before using it, the node must add the class binary data (received along with the
object) to its class loader’s table. Then, during the execution, whenever a class code
is needed, if the class loader does not find the code in the local packages, then it can
find it in its own local table of class binary data. The most important methods that con-
cern a node willing to accept code from remote sites are ������
�������� � 	
� ��� to update the

loader’s class table, as said above, and �
�� � � �
�
����
�����
� to bootstrap the class loader
mechanism, as explained later:

public class NodeClassLoader extends java.lang.ClassLoader {
public void addClassBytes(String className, byte[] classBytes) {...}
public Class forceLoadClass(String className) {...}

}

The names of user defined classes can be retrieved by means of class introspection
(Java Reflection API). Just before dispatching a process to a remote site, a recursive
procedure is called for collecting all classes that are used by the process when declaring:
data members, objects returned by or passed to a method/constructor, exceptions thrown
by methods, inner classes, the interfaces implemented by its class, the base class of its
class.

We define a base class for all objects/process that can migrate to a remote site,� ���� � ���
���� �#!���
���� � , implementing the above mentioned interface, � ���
���� ��!���
������ ,
that provides all the procedures for collecting the Java classes that the migrating ob-
ject has to bring to the remote site. Unfortunately, Java only provides single inheri-
tance, thus providing a base class might restrict its usability. The problem arises when
dealing with threads: the interface � �
!
!������ � in the standard Java class library could
solve the above issue but requires additional programming. For this reason we make� ���� � ���
���� �#!���
���� � a subclass of � ������ ����!
��� � �����
��� (with an empty ���
! method),
so that

� ���� � ���
���� �#!���
������ can be extended easily by classes that are meant to be
threads. Thus, the most relevant methods for the programmer are the following ones:

public class JavaMigratingCode extends Thread implements MigratingCode {
public void run() { /∗ empty ∗/ }
public JavaMigratingPacket make_packet() throws IOException {...}

}

The programmer will redefine ���
! if its class is intended to represent a thread. The
method � �� � ������� ���� will be used directly by the other classes of the framework or,
possibly, directly by the programmer, to build a packet containing the serialized (mar-
shalled) version of the object that has to migrate together with all its needed byte code.
Thus, this method will actually take care of all the code collection operations.

Once these class names are collected, their byte code is gathered in the first
server from which the object was sent, and packed along with the object in a� ���� � ���
���� �#!���������� ��� object (a subclass of � ���
���� �#!���������� �� storing the byte-code
of all the classes used by the migrating object, besides the serialized object itself). No-
tice that the migrating object (namely, its variables) is written in an array of bytes (in-
herited by � ���
���� ��!�������� � ���) and not in a field of type

� ���� � ���
����� ��!���

����� . This
is necessary because otherwise, when the packet is received at the remote site and read
from the stream, the remote object would be deserialized and an error would be risen
when any of its specific classes is needed (indeed, the class is in the packet but has not
yet been read). Instead, by using our representation, we have that, first, the byte code
of process classes is read from the packet and stored in the class loader table of the
receiving node; then, the object is read from the byte array; when its classes are needed,
the class loader finds them in its own table. Thus, when a node receives a process, after

filling in the class loader’s table, it can simply deserialize the process, without any need
of explicit instantiation. The point here is that classes are always stored in the class
loader’s table, but they are linked (i.e., actually loaded) on-demand.

The byte code of the classes used by a migrating process or object is retrieved by
the method � ���
������
� � 	
� ��� of the class loader: at the server from where the object is
first sent, the byte code is retrieved from the local file system, but when a process at a
remote site has to be sent to another remote site, the byte code for its classes is obtained
from the class loader’s table of the node.

Finally, two classes, implementing the above mentioned interfaces � ���
���� ��!����

����� � ��� � ������� �� and � ���
���� �#!���
���� � � ! � ��� � ������� ��� , will take care of actually mar-
shalling and unmarshalling a

� � ��� � �������� ��!
��������� ��� containing a migrating object
and its code:

public class JavaByteCodeMarshaller implements MigratingCodeMarshaller {...}

public class JavaByteCodeUnMarshaller implements MigratingCodeUnMarshaller {...}

In particular, the first one will basically rely on the method � ��� � ������� � �� of� ���� � ���
���� �#!���
���� � , while the second one will rely on � �����
������
�����
����� to load
the classes stored in the

� ���� � ���
���� ��!�������� � �� and then on Java serialization to ac-
tually deserialize the migrating code contained in the packet.

Now let us examine the code that recovers the object from a
� ���� � ���
����� ��!����

����� � �� , in the
� ���� � 	
� ��

����� � ! � �� � ������ �� . As previously hinted, a site that is will-

ing to receive a remote object must use a � ��� ��
������������
��� �� that will take care of
loading the classes received with a

� ���� � ���
���� ��!�������� ���� . The Java class loading
strategy works as follows: whenever a class A is needed during the execution of a pro-
gram, if it is not already loaded, then the class loader that loaded the class that needs
A, say B, is required to load the class A. This usually takes place in the background,
and the only class loader involved is the system class loader. In our case, we have
to make our � �����
������
�����
����� load the classes of the packet of the migrating ob-
ject. For this reason, we have to make sure that the received object (contained in the
� ���
���� ��!�������� � ��) is actually retrieved by a local object whose class is loaded by
the � �����
������
�����
����� . Since this class is a local class, i.e., a class present in the lo-
cal class library, we have to force it to be loaded by the � ��� ��
������������
��� �� and not
by the system class loader. In particular, the sub-package � �����������
	 provides an inter-
face, � ���
���� �#!���
���� �� ��� ����� and a class, � ���
���� ��!���
�������������� �� � � ��� , for recov-
ering objects and classes from a � ���
���� ��!�������� � �� . The steps to perform are: load the
� ���
���� ��!���
������ ��� ������ � � ��� class through the class loader (by forcing its loading so
to avoid it is loaded by the system class loader) and recover the received packet through
the � ���
���� �#!���
���� �� ��� �� ��� � � ��� instance:

NodeClassLoader classloader = class_loader_factory.createNodeClassLoader();
String recover_name =
� � ����� � � ��� � ��� � � 	�� � �	� � ��� � � ��
 � ������� � ������� � ����
	�� ��� ������� � � ;

MigratingCodeRecover recover =
(MigratingCodeRecover) (classloader.forceLoadClass(recover_name, true).newInstance());

Notice that � ����� � �� is declared as � ���
���� ��!���
������ ��� ������ but its actual
class is � ���
����� ��!���

������ ����� ���� � � � � (which is a class implementing the interface

� ���
���� ��!���
������ ��� ������). Indeed, the following code would generate a
������
��
���� ���
� � � ����� ����! :

MigratingCodeRecoverImpl recover =
(MigratingCodeRecoverImpl) (classloader.forceLoadClass(recover_name, true).newInstance());

since Java considers two classes loaded with different class loader as incompatible. In
the wrong code snippet above, for instance, the class � ���
����� ��!���

������ ������ ��� � � ��� of
the variable � ����� � �� would be loaded through the system class loader, and it would be
assigned an object of the same class � ���
���� �#!���
���� �� ����� � ��� � � � � , but loaded with
� ������
�����
������������ . This is the reason why we have to assign the instance loaded by
� ������
�����
������������ to a variable declared with a superclass of the actually loaded class.

Once this � ���
����� ��!���

������ ����� � ��� object is loaded through our � ��� ��
�������� �
�
�
������ , we can deserialize the received object with these two simple instructions:

recover.set_packet(pack);
MigratingCode code = recover.recover();

The method � ��������� will return the object stored in the � ���
���� ��!�������� � ��� and the
classes needed by such object, stored in the packet, will be automatically loaded by the
� ������
�����
������������ . We would like to point out that not all the classes of the received
object are necessarily loaded immediately; however, each time such object needs a class
to be loaded, this request will be handled transparently by the � ��� ��
������������
��� �� . We
observe that once the object is recovered from a packet, it can be used to create another
packet to be sent to another site.

By default, the
� ���� � 	
� ��
����� � ! � ��� �	���
�
� ��� uses a brand new class loader

(through an abstract factory) for each � ���
���� ��!�������� � �� . Thus, each migrating ob-
ject will be incompatible with other migrating objects, since each one of them
is loaded through a different classloader. This name space separation provides a
sort of isolation that helps avoiding that migrating objects coming from differ-
ent sites do not interfere with each other. If this is not the desired behavior, the� ���� � 	�� ��
���� � � ! � ��� � ������� ��� can be initialized with a specific � �����
������
�����
�����

instance that will always be used to load every migrating object. Alternatively, the user
can provide the

� ���� � 	
� ��

����� � ! � ���� ������� �� with a customized abstract factory in
order to force it to use a customized � ������
�����
������������ for each migrating object.

Examples

Let us now show a small tutorial on how to use this sub-package for Java byte-code
migrating code. First of all the classes of objects we want to migrate must be subclasses
of

� ���� � ���
���� ��!���
��� � :

public class MyCode extends JavaMigratingCode {
MyVar v = new MyVar();

public MyRetType getFoo(MyPar p) {...}
...

}

Now an object of this class (or of one of its possible subclasses) can be sent to a
remote site by creating a � ���
���� ��!�������� � �� , through a

� ���� � 	
� ��
����� � �� � ������ ���

described above. Once such a packet is created, it can be directly written into an
� � � ��� ��� ����� �
����
� �� � that, in turn, is connected, for instance, to a network output
stream:

public class Sender {
...
void sendCode(OutputStream os) throws Exception {

MigratingCodeMarshaller marshaller = new JavaByteCodeMarshaller();
MigratingCode code = new MyCode();
MigratingPacket pack = marshaller.marshal(code);
ObjectOutputStream obj_os = new ObjectOutputStream(os);
obj_os.writeObject(pack);
obj_os.flush();

}
}

Let us observe that the act of creating a � ���
���� �#!���������� �� automatically collects
all the classes that � 	�
���� � uses, apart from creating an array of bytes representing
the state of the object to migrate. Thus, the classes � 	 ���� , � 	�� �� � 	�� � and � 	����� are
stored in the packet as well.

The site that receives a migrating object will basically perform the complementary
operations: read a � ���
���� ��!�������� � �� from a stream (e.g., from the network) and use a� ���� � 	�� ��
���� � � ! � ��� � ������� ��� to retrieve the object from the received packet (all the
operations for loading the classes will be transparent to the programmer):

public class Receiver {
...
JavaMigratingCode receiveCode(InputStream is) throws Exception {

MigratingCodeUnMarshaller unmarshaller = new JavaByteCodeUnMarshaller();
ObjectInputStream obj_is = new ObjectInputStream(ss);
MigratingPacket pack = (MigratingPacket) obj_is.readObject();
return (JavaMigratingCode) unmarshaller.unmarshal(pack);

}
}

Notice that the object retrieved from the packet is of type
� ���� � ���
���� ��!���
������ ,

thus only the methods defined in that class can be used (e.g., the method � ����
� , inher-
ited by

� ��� �
���). Moreover a cast to its actual class (that in this example is � 	�
���� �)
is not possible because that class is unknown in the receiving site and, even if it was
known such cast would make the system class loader try to load the class � 	�
���� � ; ei-
ther the system class loader fails to load the class or, however, the two instances would
be incompatible as explained above.

This may seem a strong limitation, but the applications that exchange code can agree
on a richer interface or base class for the migrating code, say � 	 � ���
���� ��!����
����� ����� ,
with other methods, say � and ! ; such class must be present in all the sites where these
applications are running so that it can be loaded by the system class loader. For this rea-
son, the class � 	 � ���
����� ��!����
����� ���
� must not be inserted in the � ���
���� ��!�������� � ��� .

The class
� ���� � ���
����� ��!���

����� provides a method, � �� � � ��� ������
������
� ��� that allows

to specify which classes must not be inserted in the packet1. Thus, the code of the
sender shown above should be changed as follows (it delivers a � 	��
����� ���
� object,
where � 	��
����� ���
� inherits from the common base class � 	 � ���
���� �#!����
����� ���
� that in
turns derives from

� ���� � ���
���� ��!���
���� �):

public class Sender {
...
void sendCode(OutputStream os) throws Exception {

JavaMigratingCode code = new MyProcess();
code.setExcludeClasses(� � � ����	 ��� ��� ��
 �
 � ������� � �������
��	�� �);
MigratingPacket pack = code.make_packet();
ObjectOutputStream obj_os = new ObjectOutputStream(os);
obj_os.writeObject(pack);
obj_os.flush();

}
}

The receiving code can then assign the retrieved object to a � 	 � �������� ��!
���
����� �����

instance and then use the richer interface of � 	 � ���
���� ��!����
����� ����� :

MyMigratingProcess code = (MyMigratingProcess) unmarshaller.unmarshal();
code.m();
code.n();

An alternative to � �� � � �� ������
������
� ��� is the method ���
� � � �� ����� ����� �������

that allows to exclude a whole package (or several packages) from the set of
classes that are delivered together with a migrating object. For instance, the call to
� �� � � ��� ������
������
� ��� above could be replaced by the following statement:

code.addExcludePackage(� � � ����	 ��� ��� � �);
This allows to enforce that the whole excluded package is available on all the sites
where the migrating code is dispatched to.

When extending
� ���� � ���
���� ��!���
����� , there is an important detail to know in or-

der to avoid run-time errors that would take place at remote sites and would be very
hard to discover: Java Reflection API is unable to inspect local variables of methods.
This implies that if a process uses a class only to declare a variable in a method, this
class will not be collected and thus, when the process executes that method on a remote
site, a
�����
� � ���������
!�� � � � ���
� � ��! may be thrown. This limitation is due to the spe-
cific implementation of Java Reflection API, but it can be easily dealt with, once the
programmer is aware of the problem.

6 Implementing Dπ with IMC

To evaluate applicability of the components provided by IMC a small framework, called
JDπ, has been developed. This framework provides the runtime environment for exe-
cuting programs developed using a Dπ paradigm. The implementation schema is the

1 We remind that the mobility sub-package already excludes all the Java system classes and the
classes of the IMC package itself.

same as the one adopted for developing KLAVA [5] and X-KLAIM [2, 4]: like KLAVA

is the runtime for X-KLAIM so JDπ will be the runtime for Dπ. In the next future, a
compiler will be developed to transform Dπ code into Java code that relies on JDπ.

Design

Dπ, introduced by Hennessy and Riely [16], is a locality-based extension of the π-
calculus [27] that requires processes to be located at nodes. More precisely the top-level
consists of a parallel composition of nodes with running processes. The language is also
enriched with a ��� primitive that permits processes to migrate to different nodes.

Analyzing the Dπ paradigm, one can single out three main concepts: Nodes, Pro-
cesses and Channels. A Dπ program consists of a set of nodes. Each node, which is
identified by a locality, contains processes running in parallel. Processes interact with
each other, locally, by means of asynchronous communication performed via channels.
A process can change its execution environment (the node where it is running) by per-
forming a go l action: the execution is suspended, the process migrates at the node
named l and there it restarts its computation. We assume that each host in the network
may contain more Dπ nodes that are executed within a common environment called
Site.

The basic Dπ ingredients are implemented by using the following classes:

–
� ����� � ����� , that implements a container for nodes running on a host

–
� ����� � ��� � , that implements Dπ nodes

–
� �������
� ��!�� , that implements Dπ processes

Classes and interfaces

The UML class diagram of JDπ is presented in Figure 2. In the rest of this section, we
describe the classes in the diagram.

JdpiSite
� ���� � ��� � , which extends ������ � ������������� � ��� �
�����
����
	�� � �������� � ��� � class,

is implemented using the pattern singleton. This means that only one instance of� ���� � ��� � can be created. A reference to this instance can be obtained using the
method � �� � ! � ����! � � �	� . � �� � � ��� � also provides the method ��! �����	� that is in-
voked to initialize the site. Finally a new node can be created using the method
���� � � � � ����� ��� .

� ���� ����� � is also responsible for providing naming services for run-
ning nodes. This is obtained at no cost, since all naming capabilities are inherited di-
rectly from � ��������� � ����� .

JdpiNode
� ���� � ����� , implements a Dπ node, and each instance of it runs under the

control of a
� ����� � ����� . Since processes, in order to move across the network, need

to refer remotely to nodes,
� ���� � ����� implements �������� ��! � �
����� � . Using this ap-

proach, a process does not refer directly to a node, but it uses a
� ���� �������������
	 . In

the present implementation
� ���� �������������
	 is just an abstraction for a host name and

Fig. 2. Jdpi class diagrams

port. This class will extend ��
��� � �������
����� � � �"!�� � �#!���� �
��� ��	 (the class used to re-
fer to remote � ��� �� ��! � �
��� � � objects) in next development step. The class provides
the method ���
� �
����!�� to start a new Dπ process on it. Note that the only mechanism
for interacting with a process running at a remote node is to spawn another process to
be evaluated remotely. This is due using the method ����� �
!���� � � �������	� , that spawn a
process to be evaluated remotely.

� �� � � ����� is also responsible for the channel man-
agement. Methods ���� � � ��
����!
! �����	� , � ��!����	� and � ��� � � � � ��� are used, respectively
to create a new channel, to send an object over a channel and to receive an object from
a channel.

JdpiAgent
� �������
� ��!�� represents a (mobile) Dπ process. For this reason

� �� ���
� ��!
�

extends
� ���� � ���
���� ��!���
����� , which is defined in ��
� � � ������������ � ��� � � ����������	 . The

infrastructure defined in the IMC framework allow the instances of
� �������� ��!�� to mi-

grate from a
� ���� � ����� to another. An instance of the

� ������
����!�� class does nothing
by itself, acting like the nil process. Programmers need to extend it in order to imple-
ment other Dπ processes. The process behavior is thus defined overriding the method� � ��������� . A

� ������
����!�� provides a private attribute, ����� � � ����� , that represents the
hosting node. This can be used to invoke the operations over local channels, as de-
scribed earlier. This attribute is set when a JdpiAgent constructor is invoked, and then
only the Runtime should modify it. A

� �� ���
� ��!
� can also send itself to a remote node
by invoking the ����� �
!�� � � � ��� � method on the hosting node. Being an extension of� ���� � ���
���� �#!���
���� � ,

� �������� ��!�� extends also the
� ��� �
�� class. So a JdpiAgent is

executed like a Java Thread, by calling the method � ����
� . Note that you can’t override
the ����! method of the

� ��� �
�� class. To assure that no
� ���� �
� ��!�� should run with a

null hostNode, the � �
! method has been declared as � ��!��
� and when it is called, if the
hostNode is defined, it calls the ����������� � method, otherwise it returns.

7 Conclusions

We have presented a Java package IMC that aims at providing a framework for fast
prototyping distributed applications with code mobility. It aims at providing support to
those building run-time systems (or virtual machines) for mobile code languages and
calculi. We chose Java as the implementation platform due to its well established role
in the development of this kind of software. Indeed, Java provides many useful features
that are helpful in building network applications and in dynamically loading code from
different sources (e.g., the network itself). However, these mechanisms still require a
big programming effort, and, in this respect, they can be thought of as “low-level”
mechanisms. Because of this, many existing Java based distributed systems (see, e.g.,
[1, 7, 8, 23, 30, 31] and the references therein) tend to implement from scratch many
components that are typical and recurrent in distributed and mobile applications.

For this reason, we decided to single out the most recurrent entities of this type
of applications and pack them together in a Java framework, where the architecture of
distributed and mobile applications is addressed by the framework itself. The program-
mer can then concentrate on those parts that are really specific of his system, while
relying on the framework for the recurrent standard mechanisms (node topology, com-
munication and mobility of code). This should make the development of prototype im-
plementations faster and should relieve the programmers from dealing with low level
details. Of course, if specific applications require a specific functionality that is not in
the framework (e.g., a customized communication protocol built on top of TCP/IP, or a
more sophisticated mobile code management), the programmer can still customize the
behaviors that concern these mechanisms in the framework.

We experimented on this matter in two respects:

– In the prototype implementation of JDπ (Section 6) we used the IMC package as
it is without resorting to any customization;

– We re-engineered the implementations of our mobile code systems, TYCO and
KLAVA, using the IMC package. At this stage, we had to modify/extend only spe-
cific parts of the framework (e.g., the mobility code management for TYCO and
the communication protocol for KLAVA).

In both cases, we managed to concentrate our programming efforts on the main features
and mechanisms of the specific distributed mobile system, and, for the rest, we relied
completely on the architecture and the functionalities of the IMC framework.

Apart from the above, the Communication Protocols package was used to define
customized protocol stacks by composing micro-protocols in a flexible manner. In par-
ticular, this experiment showed how new protocols can be introduced with IMC, by
making evident the protocol and session objects involved, and by describing the path
followed by messages within a protocol stack [21].

For the rest of the project we shall, on the one hand use the framework to implement
richer languages for mobility and on the other hand we shall enrich the components to
deal with security issues.

Acknowledgements. We are greatly indebted to Michele Loreti for discussions on the
architecture of the framework and, especially, for suggestions about the implementa-
tions of JDπ.

References

1. A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Language for Resource-aware Mobile
Programs. In Vitek and Tschudin [35], pages 111–130.

2. L. Bettini. Linguistic Constructs for Object-Oriented Mobile Code Programming & their
Implementations. PhD thesis, Dip. di Matematica, Università di Siena, 2003. Available at��������� ��� � � � 	 � � � � ��� ��� � � � �

.
3. L. Bettini, M. Boreale, R. De Nicola, M. Lacoste, and V. Vasconcelos. Analysis of Distribu-

tion Structures: State of the Art. MIKADO Global Computing Project Deliverable D3.1.1,
2002.

4. L. Bettini, R. De Nicola, and R. Pugliese. X-KLAIM and KLAVA: Programming Mobile
Code. In M. Lenisa and M. Miculan, editors, TOSCA 2001, volume 62 of ENTCS. Elsevier,
2001.

5. L. Bettini, R. De Nicola, and R. Pugliese. KLAVA: a Java Package for Distributed and Mobile
Applications. Software - Practice and Experience, 32(14):1365–1394, 2002.

6. G. Boudol, I. Castellani, F. Germain, and M. Lacoste. Models of Distribution and Mobility:
State of the Art. MIKADO Global Computing Project Deliverable D1.1.1, 2002.

7. G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile Agent Coor-
dination. In K. Rothermel and F. Hohl, editors, Proc. of the 2nd Int. Workshop on Mobile
Agents, volume 1477 of LNCS, pages 237–248. Springer-Verlag, 1998.

8. P. Ciancarini and D. Rossi. Jada - Coordination and Communication for Java Agents. In
Vitek and Tschudin [35], pages 213–228.

9. G. Cugola, C. Ghezzi, G. Picco, and G. Vigna. Analyzing Mobile Code Languages. In Vitek
and Tschudin [35].

10. B. Dumant, F. Horn, F. Dang Tran, and J.-B. Stefani. Jonathan: an Open Distributed Pro-
cessing Environment in Java. In Proceedings MIDDLEWARE’98, 1998.

11. ExoLab Group. The OpenORB project, 2002. Software available for download at��������� ��� �	������� ��� � ���
� � � � � � ��� �
.

12. C. Fournet and L. Maranget. The Join-Calculus Language, 1997. Software and documenta-
tion available from

�
��� ��� ����� � � � � � �
� � ��� � � �
.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

14. C. Harrison, D. Chess, and A. Kershenbaum. Mobile agents: Are they a good idea? Research
Report 19887, IBM Research Division, 1994.

15. R. Hayton, A. Herbert, and D. Donaldson. Flexinet: a Flexible Component Oriented Mid-
dleware System. In Proceedings ACM SIGOPS European Workshop, 1998.

16. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. In U. Nest-
mann and B. C. Pierce, editors, HLCL ’98: High-Level Concurrent Languages (Nice, France,
September 12, 1998), volume 16.3, pages 3–17. Elsevier Science Publishers, 1998.

17. N. Huntchinson and L. Peterson. The x-kernel: an Architecture for Implementing Network
Protocols. IEEE Transactions on Software Engineering, 17(1):64–76, 1991.

18. R. Klefstad, D. Schmidt, and C. O’Ryan. The Design of a Real-time CORBA ORB using
Real-time Java. In Proceedings ISORC’02, 2002.

19. F. Knabe. An overview of mobile agent programming. In Proceedings of the Fifth LOMAPS
workshop on Analysis and Verification of Multiple - Agent Languages, number 1192 in
LNCS. Springer-Verlag, 1996.

20. S. Krakowiak. The Jonathan Tutorial: Overview, Binding, Communication, Configuration
and Resource Frameworks. ObjectWeb Consortium, 2002. Available electronically at��������� ��� � � � � �	� � �
	 � � � � � � ��� ��� � ����� � � � � � ��	 � � ���
� � � � � � � � � ����� �
��� � .

21. M. Lacoste. Building Reliable Distributed Infrastructures Revisited: a Case Study. In Inter-
national DOA Workshop on Foundations of Middleware Technologies (WFoMT’02), 2002.

22. M. Lacoste. IMC: Flexible Communication Support for Implementing Mobile Process Cal-
culi. Technical report, France Telecom R&D, 2003.

23. D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with Aglets.
Addison-Wesley, 1998.

24. F. Le Fessant. The JoCaml System Prototype, 1998. Software and documentation available
from

�
����� � ����� � � � � � ��� � ��� � � ��� ��	 � � �
.

25. F. Levi and D. Sangiorgi. Controlling Interference in Ambients. In Proc. 27th ACM Sym-
posium on Principles of Programming Languages (POPL’00), pages 352–364. ACM Press,
2000.

26. L. Lopes. On the Design and Implementation of a Virtual Machine for Process Calculi. PhD
thesis, University of Porto, 1999.

27. R. Milner, J. Parrow, and J. Walker. A Calculus of Mobile Processes, I and II. Information
and Computation, 100(1):1–40, 41–77, 1992.

28. C. O’Ryan, F. Kuhns, D. Schmidt, O. Othman, and J. Parsons. The Design and Performance
of a Pluggable Protocols Framework for Real-time Distributed Object Computing Middle-
ware. In Proceedings MIDDLEWARE’00, 2000.

29. A. Park and P. Reichl. Personal Disconnected Operations with Mobile Agents. In Proc. of
3rd Workshop on Personal Wireless Communications, PWC’98, 1998.

30. H. Peine and T. Stolpmann. The Architecture of the Ara Platform for Mobile Agents. In
K. Rothermel and R. Popescu-Zeletin, editors, Proc. of the 1st International Workshop on
Mobile Agents (MA ’97), LNCS, pages 50–61. Springer-Verlag, 1997.

31. G. Picco, A. Murphy, and G.-C. Roman. LIME: Linda Meets Mobility. In D. Garlan, editor,
Proc. of the 21st Int. Conference on Software Engineering (ICSE’99), pages 368–377. ACM
Press, 1999.

32. D. Sangiorgi and A. Valente. A Distributed Abstract Machine for Safe Ambients. In Proc.
28th International Colloquium on Automata, Languages and Programming (ICALP’01), vol-
ume 2076 of LNCS, pages 408–420. Springer-Verlag, 2001.

33. T. Thorn. Programming Languages for Mobile Code. ACM Computing Surveys, 29(3):213–
239, 1997.

34. V. Vasconcelos, L. Lopes, and F. Silva. Distribution and Mobility with Lexical Scoping in
Process Calculi. In Workshop on High Level Programming Languages (HLCL’98), volume
16(3) of ENTCS, pages 19–34. Elsevier Science, 1998.

35. J. Vitek and C. Tschudin, editors. Mobile Object Systems - Towards the Programmable
Internet, number 1222 in LNCS. Springer, 1997.

36. J. E. White. Mobile Agents. In J. Bradshaw, editor, Software Agents. AAAI Press and MIT
Press, 1996.

