
A Java package for class and mixin mobility
in a distributed setting?

Lorenzo Bettini

Dipartimento di Sistemi e Informatica, Università di Firenze
Via Lombroso 6/17, 50134 Firenze, Italy

bettini@dsi.unifi.it

Abstract. Mixins, i.e., classes parameterized over the superclass, can be the right
mechanism for dynamically assembling class hierarchies with mobile code down-
loaded from different sources. In this paper we present the Java packagemomi
that implements the concepts of the language MOM I, which is a calculus for ex-
changing mobile object-oriented code structured through mixin inheritance. This
package can be thought of as an “assembly” language that should be the target of
a compiler for a mobile code object-oriented language. In order to show an usage
of the package, we illustrate how it is used by the compiler of X-KLAIM , a pro-
gramming language for mobile code where distributed processes can exchange
classes and mixins through distributed tuple spaces.

1 Introduction

Mixins [11, 17] are (sub)class definitions parameterized over a superclass and were
introduced as an alternative to standard class inheritance. A mixin could be seen as
a function that, given one class as an argument, produces another class, by adding or
overriding specific sets of methods. The same mixin can be used to produce a variety
of classes with the same functionality and behavior, since they all have the same sets of
methods added and/or redefined. The superclass definition is not needed at the time of
writing the mixin definition. This minimizes the dependences between superclass and
its subclasses, as well as between class implementors and end-users, thus improving
modularity.

Due to their dynamic nature, mixin inheritance can be fruitfully used in amobile
codesetting [25, 14], where distributed applications exchange code through the network
to be dynamically integrated in the running processes. In [5], we introduced MOM I
(Mobile Mixins), a coordination language for mobile processes that exchange object-
oriented code. The underlying idea motivating MOM I is that standard class-based in-
heritance mechanisms, which are often used to implement distributed systems, do not
appear to scale well to a distributed context with mobility. MOM I ’s approach consists
in structuring mobile object-oriented code by using mixin-based inheritance, and this is
shown to fit into the dynamic and open nature of a mobile code scenario. For example,
a downloaded mixin, describing a mobile agent that has to access some files, can be
completed with a base class in order to provide access methods that are specific of the
local file system. Conversely, critical operations of a mobile agent, enclosed in a down-
loaded class, can be redefined by applying a local mixin to it (e.g., in order to restrict
the access to sensible resources, as in asand-box).

MOM I highly relies on typing. The most important feature of MOM I ’s typing is
the subtypingrelation that guarantees safe, yet flexible, code communication. We as-
sume that the code that is sent around has been successfully compiled in its own site

? This work has been partially supported by EU within the FET – Global Computing initiative
projectMIKADO IST-2001-32222, and by MIUR projectNAPOLI. The funding bodies are not
responsible for any use that might be made of the results presented here.

(independently from the other sites), and it travels together with its static type. When
the code is received on a site (whose code has been successfully compiled too) it is ac-
cepted only if its type is compliant with respect to the one expected, where compliance
is based on subtyping. If the code is successfully accepted, it can interact with the local
code in a safe way (i.e., no run-time errors such as “message-not-understood”) without
requiring any further type checking of the whole code. Thus, dynamic type checking
is performed only at communication time. This is a crucial matter for mobility, since
mobile code and in particular mobile agents are expected to be autonomous: once the
communication successfully occurred, transmitted code behaves remotely in a (type)
safe way (no failure communication to the sender will ever be required). This makes
the code exchange anatomicaction.

In this paper we present the implementation of MOM I in Java that consists in a
packagemomi. This package provides the run-time system, or the virtual machine, for
classes, mixins and objects that can be downloaded from the network and dynami-
cally composed (via themixin applicationoperation). It thus provides functionalities for
checking subtyping among classes and among mixins and for building at run-time new
subclasses. Since MOM I abstracts from the specific communication and mobility fea-
tures, this package does not provide means for code mobility and network communica-
tion, so that MOM I can be smoothly integrated into existing Java mobility frameworks.
A concrete example of how to integratemomi within a real mobile code language will
be shown in Section 4 by illustrating how the packagemomi is used within X-KLAIM
[7, 8, 2], a tuplespace based programming language for mobile code.

We would like to stress that this package should be thought of as an “assembly”
language that is the target of a compiler for a high level language (in our case the
language is X-KLAIM). If momi, as it is, was used for directly writing MOM I expres-
sions, the programmer would be left with the burden of writing methods containing
Java statements dealing withmomi objects, classes and mixins, and to check manually
that they are well typed according to MOM I types. Basically these are the same diffi-
culties a programmer has to face when using an assembly language directly, instead of
a high level language. We could say thatmomi enhances the functionalities of the Java
virtual machine: while the latter already provides useful mechanisms for dynamically
loading new classes into a running application, the former supplies means for dynami-
cally building class hierarchies (based on mixins) and for inserting new subclasses into
existing hierarchies (which is not possible in Java).

At the best of our knowledge, this is the first approach that employs mixins in a
mobile code environment for flexible and safe code exchange. This is the distinguishing
feature w.r.t. to other mixin-based languages and implementations, such as, e.g., [11, 17,
1]. Other works, such as, e.g., [16, 24, 21, 18] are concerned in merging concurrency
and object orientation and do not deal explicitly with mobile distributed code, while
other OO mobility languages such as [13, 12] do not treat dynamic inheritance. Due
to lack of space we will not provide the formal description of MOM I (we refer the
interested reader to [5, 3]) and we give only a brief description of themomi package; its
full presentation can be found in [2]. All the software presented here is freely available
athttp://music.dsi.unifi.it.

2 Main features of the package

Sincemomi is thought of as an assembly language that is target of a compiler for a high
level programming language, in order to describe the package we will use a very simple
object-oriented programming language (based on the syntax of X-KLAIM). We will not
give the formal syntax of this language, since it should be quite intuitive. Let us describe

informally mixin usage through a tutorial example (for simplicity, instance variables
are consideredprivate, methods are consideredpublic and no method overloading is
employed):

mixin M
expectn() : int ;
redef m2(a : int) : str ...
def m1(b : bool) : int

end

classC
n() : int ...
m2(a : int) : str ...

end

(new (M <> C)).m1()

Each mixin consists of three parts:

1. methodsdefinedin the mixins, likem1;
2. expectedmethods, liken, that must be provided by the superclass;
3. redefinedmethods, likem2, wherenext can be used to access the implementation

of m2 in the superclass.

The mixin applicationM <> C constructs a class, which is a subclass ofC. This op-
eration is type correct only if the classC provides all the methods requested by the
mixin (i.e., n andm2). The type checker will also guarantee that there is no conflict
among methods defined by the mixin and methods defined by the class. Mixin types
encode the information about the types of mixin methods that are defined, redefined
and expected.

In a mixin application class and mixin expressions can also be class and mixin
variables that will be replaced at run-time with actual classes and mixins downloaded
from the network. In this crucial case, it is safe to replace these variables with classes
and mixins that have a subtype w.r.t. the corresponding types of variables. A classC′ is
a subtypeof a classC if the type ofC′ hasat leastthe methods ofC. A mixin M′ is a
subtype of a mixinM if the type ofM′ hasat leastthe methodsdefinedby M, at mostthe
methodsexpectedby M andthe samemethodsredefinedby M. For objects, the subtype
relation is the same as for classes. For motivations about these subtype relations we refer
to [5]. Notice that we consider onlywidth subtyping, i.e., the methods with the same
name must have the same type, not a subtype; for a formal treatment ofdepthsubtyping
in MOM I we refer to [6]. Finally, due to lack of space, we do not consider here possible
run-time name clashes among methodsdefinedby the mixin and also by the class in a
mixin application (for such methods we use static binding instead of dynamic binding
as illustrated in [2]).

The packagemomi provides means for creating new classes by applying a mixin
to an existing class. This is similar to the task performed by a compiler for an object-
oriented language when a class derives from a base class, but the main difference is
that this operation will take place at run-time. The main aim of the package is that of
providing this mechanism in a transparent way: once a class is generated after a mixin
application it can be used to generate objects, but it can also take part in other mixin
applications as a base class. The objects created through class instantiation are fully
fledged and, so, ready for method invocations.

The crucial feature of MOM I is that classes and mixins are themselves mobile code,
i.e., code that can be dynamically downloaded from a remote source. This implies that,
at mixin application time, the actual implementation of mixins and classes may differ
from their expected (static) interface, provided that the former is subtyping-compliant
with the latter in order to guarantee the absence of run-time errors. This highlights the
main difference between our approach and other mixin based languages in the literature
(see, e.g., [17, 1]): in a mixin-based language, when the mixin application takes place

in a specific part of a program, both the code of the mixin and the one of the classes are
available for the compiler. This does not hold in MOM I since mixin application can act
also on mixin and class (polymorphic) variables.

So the task of generating a new class by applying a mixin to a class must be done in
MOM I at run-time, when the class and mixin variables have been actually instantiated
dynamically with effective code (possibly downloaded from the network). Basically
this is the same difference that distinguishes a language with dynamic class loading,
such as Java, and one with static loading, such as C++. This is similar to what happens
in calculi where classes and mixins are “first-class citizens”, i.e., they can be passed
as parameters to functions (see, for example, [10]). It is important to notice, though,
that in such calculi the matching between actual and formal parameters is always based
on equality (at least at the best of our knowledge), because the burden of checking
extra constraints at parameter-passing time, to avoid inheritance/subtyping conflicts,
is not worthwhile in a sequential scenario. In a mobile distributed scenario, instead,
where flexibility is a must because the nature of the downloaded code cannot always be
estimated a priori, the use of such extra subtyping constraints at communication time
is a small price to pay, especially since this allows to combine local and foreign code
without any recompilation.

Dynamic type checking is minimized (i.e., only during the exchange of code); thus,
in implementing the packagemomi, a particular importance was given to this matter:
the actual content (the methods) of classes and mixins is only examined during mixin
application in order to make any method call on objects completely untyped. This re-
flects, as we will remark during the description of objects and methods, in the fact that
no further type-checking is performed when invoking a method on an object (and when
performing casts in the Java-code corresponding to MOM I method bodies), and it is
also consistent with the idea of having a virtual machine, that basically executes un-
typed code as in an assembly language. Of course this relies on the assumption that the
compiler generating code that usesmomi is correct. How to have a formal proof of such
a soundness property may be the subject of future studies.

3 The main classes of the package

The packagemomi contains the classes that abstract the concepts of the MOM I lan-
guage: objects, mixins, classes, types and methods. Indeed also methods are low level
structures in the package: they are manipulated in order to assemble new classes at run-
time and to build object method tables. Given a classC (resp. a mixinM) in the high
level language, the compiler is supposed to generate a subclass ofMoMiClass (resp.
Mixin), a subclass ofMoMiObject and a subclass ofMoMiMethod for each methods
defined in the classC (resp.defined, redefinedandexpectedin the mixin M). All the
functionalities provided by the package that concern manipulation of these generated
classes (i.e., object instantiation and mixin application) are based on the assumption
that the compiler has already successfully type-checked the source language.

The classMoMiMethod represents a method defined in a MOM I class or mixin
and it is the base class from which all the generated methods have to derive. Every
MoMiMethod owns a private stack where parameters are pushed before calling the
method, popped from within the method body, and where the return value is pushed
from within the method. Classes derived fromMoMiMethod have to implement the
Java methodinvoke. This method can throw aNoSuchMethodException in case of
a “message-not-understood” error; however, this exception should never be raised as
long as the compiler produces correct code. Consistently with standard object-oriented

language implementations (see, e.g., [23, 22]) the pointer to the current target object
self (or this) is passed to the method at invocation time.

Thus, the steps for calling a method consist in pushing the parameters on the stack
of the method (pass_argument), invoking the method passing the object on which the
method is called and, in case, retrieving the result from the stack (get_result). These
basic instructions are to be generated by the compiler, that also has the responsibility of
pushing the parameters on the stack in the right order and of trying to retrieve the result
only if the method returns a value (in this case it has also to cast the returned value to
the right type).

Example 1.Let us assume that we have to call a method that takes as argument an
integer and a string (passing the integer100 and the string"foo") and returns a boolean.
The code that the compiler should generate, if the reference to the method is stored in
meth (how to obtain such a reference and how to pass the “right”self pointer will be
shown in the following), is similar to the following one:

meth.passargument(new Integer(100));
meth.passargument(newString("foo"));
meth.invoke(passself);
b = (Boolean) meth.getresult() ;

The body ofinvoke has to be generated accordingly: it must pop the arguments
from the stack and assign them to the parameters, and cast the pointerself to the
actual type. A return statement will be translated to a push of the value in the stack
followed by an exit statement for leaving the method (i.e., a standard Javareturn).

Example 2.Going back to the previous example, let’s assume that the body of the
method we are calling is as follows

m(i : int , s :str) : bool
begin
if (i < 10) then
return i > my field # myfield is an instance variable

endif;
return i >= 0

end

The compiler should produce code similar to the following one:

public void invoke(MoMiObject self) throws NoSuchMethodException{
MyObject self = (MyObject) self;
String s = (String) stack.pop();
Integer i = (Integer) stack.pop();

if (i.intValue()< 10){
stack.push(newBoolean(i.intValue()> self.my field.intValue()));
return ;

}
stack.push(newBoolean(i.intValue()>= 0));
return ;

}

Indeed theself pointer is casted to the actual (expected) type (sayMyObject), and
the arguments are popped from the stack and assigned to the formal parameters (once
again after casting). Notice how themy_field instance variable is explicitly prefixed
with the objectself in the generated code.

If the compiler for our language correctly type-checked the source program, the
type casts in the generated code will be type-safe.

The base class for all MOM I objects isMoMiObject. The derived classes only have
to add the fields (instance variables) declared in the class this object is instantiated
from, and this is basically the only task the compiler has to perform when generating
code for MOM I objects. The classMoMiObject relies on the base classWithMethods
that includes a table ofMoMiMethods, methods, i.e., anHashtable, where the key
is the method name (the untyped nature of the package is proved by methods being
searched only by name and not by their types). Such table corresponds to the table used
for method dynamic binding in C++ and Java.WithMethods is also the base class for
Mixin andMoMiClass representing, respectively, MOM I mixins and classes (shown
later).

An object contains also the structure of objects of superclasses. In languages such
as C++, this boils down to memory offset careful management: the instance variables
of an object of a derived class start, in the memory layout of the object, where the
instance variables of an object of the parent class end. This enables objects of derived
classes to be used in place of objects of superclasses. Once again, in such languages,
this management can be performed statically by the compiler since the structure of the
subclass and of the superclass are available at compile time.

This cannot be done in MOM I since the structures of objects are known only at run-
time. Thus the relation between the instance variables of the mixin (subclass) and those
of the superclass has to be established dynamically through a reference; this reference
is represented by the fieldnext in theMoMiObject class. This is also consistent with
the “compositional” nature of mixins: mixin-based inheritance is more similar to object
composition, than to object extension. Thus, when an object of the derived class has to
be passed to a method inherited by the superclass (i.e., a method expected by a mixin,
or the inherited implementation of a redefined method), the object pointed to bynext
has to be passed, instead ofself. This is a crucial matter, since a method can access the
fields of theself object and indeed it expects an object of the class where the method
is defined (notice the cast toMyObject in Example 2).

When theself pointer has to be explicitly passed at method invocation time, the
“right” self has to be passed, i.e., the one that is instance of the class the called method
is defined in. Since dynamic binding is used for method invocation, the “right”self
depends on the specific method version that is called. That is why we need to use,
apart from the method table, also aself tableindexed by method names. Thus, first
the reference to the method to be called has to be retrieved by usingget_method and
then the pointer to the rightself has to be retrieved by usingget_self. The compiler
has not to take care of building theself_table: this task is performed during object
creation by the packagemomi.

The technique shown above allows to implement dynamic binding for method in-
vocation: in particular, if the method that is being called is an expected method, then
the implementation provided by the base class will be called, passing the self inherited
from the base class. If a method of the base class is calling a method that has been re-
defined by the mixin, then the new implementation is called, passing as self the object
of the derived class.

Example 3.If the methodm of the Example 1 is invoked on the objectobj the complete
invocation sentence is as follows:

meth = obj.getmethod("m");
passself = obj.getself("m");

meth.passargument(new Integer(100));

meth.passargument(newString("foo"));
meth.invoke(passself);
b = (Boolean) meth.getresult() ;

pass self may be different fromobj: if m is an expected method, thenpass self
will be a self contained inobj (since such method is inherited from the superclass);
alternatively, ifm is a redefined method and it is being invoked from a method of a
superclass, since dynamic binding is employed,pass self will be an object actually
containingobj.

The classMixin of the packagemomi is the most complex one since it provides
means for performing the mixin application operation and for performing object in-
stantiation. Notice that this class will also be the base class forMoMiClass; this makes
sense from the design point of view, since a class can be seen as a mixin where there
are no expected methods and no redefinitions.

The crucial part ofMixin is the (static) methodapply that applies a mixin to a
class and returns a new derived class. This method basically copies in the new class’
method table all the methods defined and redefined by the mixin and all the methods
expected by the mixin taking them from the superclass. The methodapply only creates
a newMoMiClass object, with the most specialized version of each method, but it does
not perform any operation concerning dynamic and static bindings: indeed, this will be
performed at object instantiation time, carried on by the methodnew_instance. First
of all this method calls afactory method[19], _new_instance, that classes deriving
from Mixin andMoMiClass have to redefine in order to return an instance of the corre-
sponding class deriving fromMoMiObject. Finally, theself tables of the new created
object is initialized.

A crucial feature of MOM I is that object-oriented values (i.e., objects, classes and
mixins) are explicitly typed when they are exchanged among distributed sites. The com-
piler has to statically decorate these values when they are sent to a remote site. This
annotation will consist in inserting the statically built type in a message containing an
object-oriented value. The packagemomi supplies the classes representing the types
for the following items: methods, objects, classes and mixins, apart from basic types
(that depends on the run-time systems). The interface for MOM I types isMoMiType,
containing methodsequals andsubtype.

The classRecordType stores method types in an hashtable, and performs com-
parison on record types, not considering the order of method types.ObjectType and
ClassType basically rely on this class for performing comparisons. The class for mixin
types,MixinType keeps a different record type for defined, expected and redefined
methods. The comparison is consistent with the subtyping rule presented at the begin-
ning of Section 2: for redefined methods the equality is required, while for expected
methods the subtyping relation is inverted. Let us observe that in the previously de-
scribed classes all these classes for types are never used. This shows the untyped nature
of the run-time environment. Types will be used only during the communication.

4 Object-Oriented mobility in X-K LAIM and KLAVA

X-K LAIM [7, 8, 2] is a mobile code programming language where communication takes
place through multiple tuple spaces (as in Linda [20]) distributed on sites; sites are ac-
cessible through their localities (e.g., IP addresses). The reserved localityself can be
used to access the local execution site (in order to avoid confusion with the object-
orientedself, we usethis in object-oriented expressions instead ofself). A tuple t

public classMyMixin extendsMixin {
public MyMixin() {
setmethod("myinit", newMyMixin myinit());
setmethod("print_fields", newMyMixin print fields());
setmethod("init", newMoMiMethod("init", MoMiMethod.EXPECTED));
setmethod("get_i", newMoMiMethod("get_i", MoMiMethod.EXPECTED));
}

protectedMoMiObject new instance(){ return new MyMixinObject(); }

public static MixinType createtype(){
MixinType newtype =newMixinType();
new type.addMethod(MyMixinmyinit.createtype(), MoMiMethod.DEFINED);
new type.addMethod(MyMixinprint fields.createtype(), MoMiMethod.REDEFINED);
new type.addMethod(MyMixininit.createtype(), MoMiMethod.EXPECTED);
new type.addMethod(MyMixinget i.createtype(), MoMiMethod.EXPECTED);
return new type;
}
}

Listing 1: The Java class generated by the compiler for the mixinMyMixin.

can be inserted in a tuple space located at locality` with the operationout(t)@` and re-
moved (resp. read) within (resp.read). Pattern matching is used for selecting tuples. X-
KLAIM programs are compiled into Java programs that use the package KLAVA [9] that
provides the run-time system for X-KLAIM operations. Both X-KLAIM and KLAVA
have been extended in [2] in order to usemomi for object-oriented code mobility. In
particular, ifx is a class variable, the operationin(!x)@` retrieves a tuple from̀ con-
taining a class with a subtype ofx. X-K LAIM is based on the kernel language KLAIM
[15]; the formal extension of the KLAIM model with the MOM I features is presented in
[4].

The package KLAVA already provided all the primitives for network communica-
tion, through distributed tuple spaces, and, in particular, for code mobility, not supplied
by momi. Thus the package has been modified in order to be able to exchange code that
relies onmomi, and for performing subtyping onmomi elements during pattern match-
ing by relying on theMoMiType classes and the associated subtyping. On the other
hand, the X-KLAIM compiler generates code that uses both the KLAVA package and
momi. Obviously, before generating code, it also performs type checking according to
the typing system defined by MOM I. Let us now consider a simple mixin definition:

mixin MyMixin
expectinit(a : int , b : str);
expectget i() : int ;
redef print fields()begin ... end;
def myinit(x : int , y : str) begin ... end

end

that expects from the super class two methods, redefines one, and defines a new method.
The Java class generated by the X-KLAIM compiler for this mixin definition is shown
in Listing 1. For each method of the mixin, a subclass ofMoMiMethod is generated by
the compiler. The generated constructor ofMyMixin builds the method table. Notice
that, for each expected method, objects of the base classMoMiMethod are inserted.
Instead, the generated classes for expected methods are only useful for retrieving the
types of these methods. The compiler generates an appropriatecreate_type method
that allows to retrieve the static type (e.g., for decorating mobile code that has to be
sent to a remote site). For instance, concerningMoMiMethods, such a type will contain
the entire method signature, while for mixins it will contain three record types. Classes
generated forMyMixinObject and the other methods are similar.

mixin MyPrinterAgent
expectprint doc(doc :str) : str;
def start agent() :str
begin
return
this.print doc
(this.preprocess("my document"))

end;
def preprocess(doc :str) : str
begin
return "preprocessed(" + doc +")"

end
end

rec SendPrinterAgent[server :loc]
declare
var response :str

begin
out(MyPrinterAgent)@server;
in(!response)@server;
print "response is " + response

end

mixin PrinterAgent
expectprint doc(doc :str) : str;
def start agent() :str;

end

classLocalPrinter
print doc(doc :str) : str
begin
real printing code omitted :−)
return "printed " + doc

end;
init()
begin
nil # foo init

end
end

rec ReceivePrinterAgent[]
declare
var rec mixin : mixin PrinterAgent;
var result :str

begin
in(!rec mixin)@self;
result :=
(new rec mixin <> LocalPrinter).startagent();
out(result)@self

end

Listing 2: The printer agent example.

4.1 A mobile printer agent in X-K LAIM

The programming example shown in this section involves mixin code mobility, and
implements “dynamic inheritance” since the received mixin is applied to a local parent
class at run-time. We assume that a site provides printing facilities for local and mobile
agents. Access to the printer requires a driver that the site itself has to provide to those
that want to print, since it highly depends on the system and on the printer. Thus, the
agent that wants to print is designed as a mixin, that expects a method for actually
printing,print_doc, and defines a methodstart_agent through which the site can
start its execution. The actual instance of the printing agent is instantiated from a class
dynamically generated by applying such mixin to a local superclass that provides the
methodprint_doc acting as a wrapper for the printer driver. However the system is
willing to accept any agent that has a compatible interface, i.e., any mixin that is a
subtype of the one used for describing the printing agent. Thus any client wishing to
print on this site can send a mixin that is subtyping compliant to the one expected. In
particular such a mixin can implement finer printing formatting capabilities.

Listing 2, whererec is the X-KLAIM keyword for defining a process, presents a pos-
sible implementation of the printing client node (on the left) and of the printer server
node (on the right). The printer client sends to the server a mixinMyPrinterAgent
that complies with (it is a subtype of) the mixin that the server expects to receive,
PrinterAgent. In particularMyPrintedAgent mixin will print a document on the
printer of the server after preprocessing it (methodpreprocess). On the server, once
the mixin is received, it is applied to the local (super)classLocalPrinter, and an ob-
ject (the agent) is instantiated from the resulting class, and started so that it can actually
print its document. The result of the printing task is then retrieved and sent back to the
client.

We observe that the sender does not actually know the mixin namePrinterAgent:
it only has to be aware of the mixin type expected by the server. Furthermore, the sent
mixin can also define more methods than those specified in the receiving site, thanks
to the mixin subtyping relation. This adds a great flexibility to such a system, while

hiding these additional methods to the receiving site (since they are not specified in the
receiving interface they are actually unknown statically to the compiler).

Acknowledgments I would like to thank the two co-authors of MOM I, Viviana
Bono and Betti Venneri. The anonymous referees provided helpful suggestions for
clearing up some aspects in the paper.

References
1. D. Ancona, G. Lagorio, and E. Zucca. Jam - A Smooth Extension of Java with Mixins. In

ECOOP 2000, number 1850 in LNCS, pages 145–178, 2000.
2. L. Bettini. Linguistic Constructs for Object-Oriented Mobile Code Programming & their

Implementations. PhD thesis, Dip. di Matematica, Università di Siena, 2003. Available at
http://music.dsi.unifi.it.

3. L. Bettini, V. Bono, and B. Venneri. MoMi - A Calculus for Mobile Mixins. Manuscript.
4. L. Bettini, V. Bono, and B. Venneri. O’KLAIM : a coordination language with mobile mixins.

In Proc. of Coordination 2004. Springer. To appear in LNCS.
5. L. Bettini, V. Bono, and B. Venneri. Coordinating Mobile Object-Oriented Code. In F. Ar-

barb and C. Talcott, editors,Proc. of Coordination Models and Languages, number 2315 in
LNCS, pages 56–71. Springer, 2002.

6. L. Bettini, V. Bono, and B. Venneri. Subtyping Mobile Classes and Mixins. InFOOL 10,
2003.

7. L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-KLAIM .
In Proc. of the 7th IEEE WETICE, pages 110–115. IEEE Computer Society Press, 1998.

8. L. Bettini, R. De Nicola, and R. Pugliese. X-KLAIM and KLAVA : Programming Mobile
Code. InTOSCA 2001, volume 62 ofENTCS. Elsevier, 2001.

9. L. Bettini, R. De Nicola, and R. Pugliese. KLAVA : a Java package for distributed and mobile
applications.Software – Practice and Experience, 32(14):1365–1394, 2002.

10. V. Bono, A. Patel, and V. Shmatikov. A Core Calculus of Classes and Mixins. InProc.
ECOOP’99, number 1628 in LCNS, pages 43–66. Springer-Verlag, 1999.

11. G. Bracha and W. Cook. Mixin-based inheritance. InProc. OOPSLA ’90, pages 303–311,
1990.

12. M. Bugliesi and G. Castagna. Mobile Objects. InProc. of FOOL, 2000.
13. L. Cardelli. A Language with Distributed Scope.Computing Systems, 8(1):27–59, 1995.
14. A. Carzaniga, G. Picco, and G. Vigna. Designing Distributed Applications with Mobile Code

Paradigms. InProc. ICSE ’97, pages 22–33. ACM Press, 1997.
15. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM : a Kernel Language for Agents Interaction

and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.
16. P. Di Blasio and K. Fisher. A Calculus for Concurrent Objects. InCONCUR ’96, volume

1119 ofLNCS, pages 655–670. Springer, 1996.
17. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. InProc. POPL ’98, pages

171–183, 1998.
18. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the Join Calculus. In

FSTTCS 2000, volume 1974 ofLNCS, pages 397–408. Springer, 2000.
19. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.
20. D. Gelernter. Generative Communication in Linda.ACM Transactions on Programming

Languages and Systems, 7(1):80–112, 1985.
21. A. Gordon and P. Hankin. A Concurrent Object Calculus: Reduction and Typing. InProc.

HLCL ’98, volume 16.3 ofENTCS. Elsevier, 1998.
22. T. Lindholm and F. Yellin.The Java(TM) Virtual Machine Specification. Addison-Wesley,

2nd edition, 1999.
23. S. B. Lippman.Inside the C++ Object Model. Addison-Wesley, 1996.
24. B. C. Pierce and D. N. Turner. Concurrent Objects in a Process Calculus. InProc. TPPP 94,

volume 907 ofLNCS, pages 187–215. Springer, 1995.
25. T. Thorn. Programming Languages for Mobile Code.ACM Computing Surveys, 29(3):213–

239, 1997.

