
Process Calculi and the Verification of Security
Protocols

Michele Boreale Daniele Gorla
Dipartimento di Sistemi e Informatica, Università di Firenze

e-mail: {boreale,gorla }@dsi.unifi.it

Abstract —
Recently there has been much interest towards using formal
methods in the analysis of security protocols. Some recent ap-
proaches take advantage of concepts and techniques from the
field of process calculi. Process calculi can be given a formal yet
simple semantics, which permits rigorous definitions of such
concepts as ‘attacker’, ‘secrecy’ and ‘authentication’. This fea-
ture has led to the development of solid reasoning methods and
verification techniques, a few of which we outline in this paper.

1. Introduction

Security protocols have become an essential ingredient of
communication infrastructures. When executed in a hostile
environment, these protocols may be subject to a number of
attacks, that can compromise the security of the data being
exchanged over a network. An attacker might typically learn
a piece of information which is supposed to remain secret, or
it might fool an agent into accepting a compromised key as
authentic. Proving a protocol resistant to such attacks is no-
toriously a difficult task. In the last decade, formal methods
have been successfully used to analyse security protocols,
sometimes uncovering flaws in protocols that were thought
to be correct.
The BAN logic [13] was one of the first, partially success-
ful attempts at using formal methods in the field of secu-
rity. Later on, finite-state model checking has been exten-
sively used (see e.g. [22, 27]). Some recent developments
of formal methods stem from concepts well established in
the field of process calculi. In particular, Abadi and Gordon
have proposed thespi-calculus[3] by elaborating on Milner,
Parrow and Walker’sπ-calculus [25], a process language
based on synchronous message passing. The spi-calculus
extends theπ-calculus with cryptographic primitives, thus
allowing the description of security protocols as systems
of concurrent processes that can exchange encrypted data.
The main advantage of this approach is that process calculi
can be given formal yet simple semantics that permit rigor-
ous definitions of such notions as ‘attacker’, ‘secrecy’ and
‘authentication’. Another distinguishing feature of the spi-
calculus is its reliance on the powerful scoping constructs
of the π-calculus to get a clean formalization, at a linguis-

This work has been partially supported by EU within the FET - Global
Computing initiative, project MIKADO IST-2001-32222 and by MIUR
project NAPOLI. The funding bodies are not responsible for any use that
might be made of the results presented here.

tic level, of such concepts as ‘nonce’ and ‘newly generated
key’. In a sense, the spi-calculus improves both the BAN
logic, which provides formal reasoning rules but not an op-
erational model, and finite-state methods, which provide a
precise operational model but not a convenient basis for for-
mal reasoning. These features have led to the development
of solid reasoning techniques and verification methods (e.g.
[4, 10, 5, 7, 8, 12]), a few of which we will survey in this
paper.
In Section 2. we give a brief overview of the spi-calculus,
mainly concentrating on syntax and informal explanation of
its operators. Section 3. is devoted to presenting a simplified
version of theKerberosprotocol [21], which will serve as a
running example. While this small protocol is well suited for
illustrating the key ideas of the approaches presented here,
the reader should be warned that proofs for more sophisti-
cated, in particular multi-session, protocols require a higher
degree of ingenuity (see [3, 10]). In Sections 4. and 5. two
formal semantics of the spi-calculus are outlined: the first is
based onobservational equivalences, the second is centered
around the idea oftrace analysis. Based on these seman-
tics, rigorous reasoning principles and verification methods
are described. Section 6. discusses the relationship between
the presented approaches, while Section 7. contains a few
concluding remarks and comparison with related work.

2. An Outline of the Spi-calculus

In this section, we intend to give an informal account of the
spi-calculus, by concentrating on syntax and intuitive expla-
nation. The reader is referred to [3, 10] for full technical
details.
There are several versions of the spi-calculus. In the rest
of this paper, we will consider a variant supporting shared-
key cryptography only. This limited language is sufficient
to illustrate the key ideas of the approach, while avoiding
many technicalities.

Syntax. The syntax of the language is summarized in Ta-
ble 1. A countable set ofnamesa,b. . . ,h,k, . . . ,x,y,z. . . is
assumed. Names can be used as variables, communication
channels, primitive data or keys: we do not distinguish be-
tween these four kinds of objects (notationally, we prefer
lettersh,k, . . . when we want to stress the use of a name as a
key). Messages are built via pairing and shared-key encryp-
tion. In particular,{M}k represents the ciphertext obtained

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

1

by encryptingM under keyk, using a shared-key encryption
system. An informal explanation of the process operators
might be the following:

• 0 is the process that does nothing;

• τ.P does one internal computation step (we do not
care precisely what), and then proceeds likeP;

• a(x).P waits for a message on channela and then
binds it to variablex within P;

• a〈M〉.P sends messageM on channela and then be-
haves likeP;

• [M = N]P behaves likeP if the messageM equalsN,
otherwise it is stuck;

• caseM of {y}k inP attempts decryption ofM usingk
as a key: if the decryption succeeds, i.e. ifM = {M′}k
for someM′, thenM′ is bound to variabley within P,
otherwise the whole process is stuck;

• pair M of 〈x,y〉 in P attempts splittingM; if this is
possible, i.e. ifM is a pair〈M′,N′〉, the two compo-
nentsM′ andN′ are bound, respectively, to variablesx
andy within P, otherwise the whole process is stuck;

• (ν b)P creates a new nameb which is only known to
P;

• P+ Q can behave either asP or Q: the choice may
be triggered either by the environment or by internal
computations ofP or Q;

• P|Q is the parallel execution ofP andQ;

• ! P can be thought of as unboundedly many copies of
P running in parallel, i.e. asP|P|P| · · · .

For the sake of simplicity, we are considering here neither
integer data values, present in [3], nor the general form of
boolean guard, used in [10]. In the definition of this lan-
guage there are a few implicit assumptions on the underlying
shared-key encryption system. We try to make them explicit
below:

1. A plaintextM encrypted under a keyk can only be de-
crypted usingk; if the attacker does not knowk, he/she
cannot guess or forge this key (perfect encryption);

2. the only way to produce a ciphertext that looks like
{M}k is to encryptM underk;

3. there is enough redundancy in the structure of mes-
sages to tell whether a given ciphertext can be cor-
rectly decrypted with a given key.

The first assumption implies that we can say nothing
about attacks that exploit probabilistic or statistical analysis,
which may arise in practice, as showed in [29]. In fact, we
are concentrating on high-level, logical properties of proto-
cols. The second assumption is an abstraction of the small

a,b. . . ,h,k, . . . ,x,y,z. . . names

M, N ::= a | 〈M,N〉 | {M}k messages

P, Q ::= processes
0 (null)

| τ.P (internal action)
| a(x).P (input pre f ix)
| a〈M〉.P (out put pre f ix)
| [M = N]P (match)
| caseMof {y}k inP (decryption)
| pair M of 〈x,y〉 in P (splitting)
| (ν b)P (restriction)
| P+Q (choice)
| P |Q (parallel)
| ! P (replication)

Table 1
Syntax of the calculus

probability, for real cryptosystems, that different〈plaintext,
key〉 pairs collide onto the same ciphertext. The third as-
sumption is in practice implemented by attaching a crypto-
graphic checksum to every plaintext before encryption.
We fix now a few notational shorthands that will be used in
the remainder of the paper:

• a(x). · · · is a binder forx, case · of {y}k in · · · is a
binder fory, pair · of 〈x, y〉 in · · · is a binder forx and
y and restriction(ν b) · · · is a binder forb. An occur-
rence of a namex is said to beboundwhen it occurs
inside the scope of a binder forx. Bound occurrences
of names can be renamed to fresh names without af-
fecting the meaning of a process term. We shall al-
ways assume that bound names are distinct from each
other and from names that are not bound.

• Names that are not bound arefree. We use the no-
tationP(x) to emphasize that namex may occur free
(i.e. not in the scope of any binder forx) in P and,
for any messageM, write P(M) to abbreviateP[M/x]
i.e. P with each free occurence ofx replaced byM.
The set of free names of a processP will be written as
fn(P).

• [M = N,M′ = N′] stands for two consecutive match-
ings [M = N][M′ = N′]. Similarly, (ν a,b)P stands
for (ν a)(ν b)P andpair M of 〈x,y,z〉 in P stands for
pair M of 〈x, l〉 in pair l of 〈y,z〉 in P. The tilde sym-
bol ·̃ will be used to denote vectors of objects.

A small example illustrates the use of the calculus for de-
scribing cryptographic protocols.
Example 1:Consider the simple protocol where two prin-
cipalsA andB share a private keyk. A wants to sendB a
datumd encrypted underk, through a public channelc. B
accepts any message encrypted withk that is sent alongc.

A→ B: {d}k on channelc.

2 JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

This informal notation can be translated into the spi-calculus
processP defined as follows:

A
def= c〈{d}k〉.0

B
def= c(x).casexof {y}k inF(y)

P
def= (ν k)(A|B).

A stops after outputing{d}k on c. B picks up any message
from c and then tries to decrypt it usingk. If decryption suc-
ceeds, the result is bound to variabley within F(y). The lat-
ter is some expression describing the subsequent behaviour
of B, depending on the result of the decryption,y. The whole
protocolP is the parallel compositionA |B, with the restric-
tion (ν k) indicating that the keyk is only known toA and
B.

On restricted names. The restriction operator plays a cru-
cial role in the spi-calculus.(ν k)P makes the namek pri-
vate to P. This resembles declarations of local variables
in structured programming languages. There is one crucial
difference, however: in spi-calculus, a restricted name can
beexportedoutside its original scope, while remaining dis-
tinct from every name of the recipient. As such, the restric-
tion operator is ideal for modelling those “fresh unguessable
quantities” (like random numbers) that are an important in-
gredient of many cryptographic protocols. The following
equation, for instance, explains the creation of a noncen
and its transmission from one principal to another, along a
private channelc:

(ν c)(((ν n) c〈n〉.A) | c(x).B(x)) = τ.(ν c,n)(A|B(n))

The symbol= above can be given a precise meaning in
terms of observational semantics, as we shall see in Sec-
tion 4. Informally, this equation says that the consumption
of complementary input and output prefixes (c(x). andc〈n〉.)
gives rise to an internal communication (represented by the
τ. prefix) in whichn is communicated. This also causes the
scope of the restriction(ν n) to be extended so as to include
B. The scope extension is capture-avoiding, in the sense that
n is automatically renamed if it happens to clash with some
name inB. This kind of scope extension is referred to as
scope extrusion.
A slightly more complicated equation holds whenc is a pub-
lic, rather than private, channel. In this case, the equation
also explains the possible interaction of the two principals
with the external environment alongc.

3. The BAN Kerberos Protocol

We shall illustrate the techniques presented in later sections
on the version of the Kerberos protocol considered by Bur-
rows, Abadi and Needham in [13]. This section is devoted
to an informal presentation of this protocol.
Consider a system where two agentsA (the initiator) and
B (the responder) share two long-term secret keys,kAS and
kBS respectively, with a serverS. The protocol is designed
to set up a new secret session keykAB betweenA and B.
Informally, the protocol can be described as follows:

A−→ S : A,B
S−→ A : {T,kAB,B,{T,kAB,A}kBS

}kAS

A−→ B : {T,kAB,A}kBS
,{A,nA}kAB

B−→ A : {nA}kAB
.

In the first message,A starts the protocol by simply commu-
nicating toShis intention to establish a new connection with
B. In the second message,S generates a fresh keykAB and
inserts it into an appropriate certificate, which is sent toA.
The certificate uses a timestampT, meant to assureA andB
about the freshness of the message: this is to counter attacks
based on replays of old messages. In the third message,A
extractsB’s part of the certificate ({· · ·}kBS

) and forwards it
to B, together with some challenge information containing
a new noncenA. The fourth message isB’s response toA’s
challenge: the presence ofnA is meant to assureA he is re-
ally talking toB.
In the next two sections we shall verify, relying on two dif-
ferent techniques, a one session configuration of this pro-
tocol, under the hypothesis that an old session keykold be-
tweenA andB has been compromised. We shall not consider
the multi-session case, which requires a more complex anal-
ysis. For the sake of simplicity, we shall also suppose that
the protocol is always initiated byA and that the responder
is alwaysB.

4. Observational Equivalences

Following [3], a powerful way of expressing authentication
properties of a security protocolP is to require thatP is
equivalentto a processQ that, by definition, exhibits the de-
sired behaviour. In the case of authentication, for instance,Q
never accepts non-authentic messages. Secrecy as well can
be expressed via this notion of equivalence. For example, let
P(d) be a process in which a secret datumd is exchanged,
properly encrypted, along a public channel. A way of assert-
ing thatP(d) keepsd secret is requiring thatP(d) be equiv-
alent toP(d′), for every otherd′. An appropriate notion of
equivalence is heremay-testing[15, 9, 3]. Its intuition is pre-
cisely thatnoexternal observer (which in the present setting
can be read as ‘attacker’) can notice any difference when,
e.g., running in parallel withP(d′) or P(d). Formally, we
define an observer as a process that is possibly capable of a
distinct ‘success’ actionω; the latter is used to signal that
the observed process has passed observer’s test. If one inter-
prets ‘passing a test’ as ‘revealing a piece of information’,
then processes that may pass the same tests may potentially
reveal the same information to external observers: as such,
they should be considered equivalent from a security point
of view. This also accounts for implicit information flow, by
which an observer might extract useful information from the
overall behaviour of a system.

In the definition below,R
ω=⇒ means thatR can execute

zero or more internal computation steps, followed by anω–
action.

Definition 2(may-testing)Two spi-calculus processesP

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

3

andQ aremay-testing equivalent, writtenP ' Q, if for ev-
ery observerO, P|O ω=⇒ iff Q|O ω=⇒ .

A similar intuition is supported by other contextual equiv-
alences, likebarbed equivalence[26]. While rigorous and
intuitive, the definitions of these equivalences suffer from
universal quantification over contexts (attackers), that makes
equivalence checking very hard. It is then important to de-
vise proof techniques that avoid such quantification.
Results in this direction are well-known for traditional pro-
cess calculi. For example, both in CCS [15] and in theπ-
calculus [9], may-testing is easily proven to coincide with
trace equivalence, which requires that two equivalent pro-
cesses generate the same sequences ofactions(I/O events).
Similarly, barbed equivalence is proved to coincide with
(early) bisimulation[25]. The latter requires that each ac-
tion of one process be ‘simulated’ by the other, and that the
target processes be still bisimilar. In this section we out-
line a way of obtaining similar results in the case of the spi-
calculus; full details can be found in [10]. We then discuss a
few resulting reasoning rules and apply them to the Kerberos
protocol.

4.1. A Labelled Transition System for the Spi-calculus

In non cryptographic calculi (like theπ-calculus) processes
and observers share the same knowledge of names. This
means, in essence, that the external environment may en-
able any action that a process is willing to take. This is
not true anymore when moving to the spi-calculus. In fact,
consider the processP that sends a fresh nameb encrypted
with a fresh keyk and then executesP′. This is written
(ν b,k)c〈{b}k〉.P′. When an observer receives{b}k, it does
not acquire automatically the knowledge ofb, becausek is
still secret. Thus, ifP′ is willing to input something atb (say

P′ def= b(x).P′′), the environment cannot satisfyP′’s expecta-
tions. For this reason, execution tracesà la π-calculus fail
to capture the interactive behaviour of processes.
This discrepancy leads us to make the concept ofenviron-
mentexplicit, as a record of the knowledge of names and
keys that an external observer has acquired about a certain
process. More precisely, we model an environment as a
mappingσ from a set of variables to a set of messages. In-
tuitively, an environment is a set of locations named by dis-
tinct variables, where an observer (usually an attacker) will
store known information. We want now to describe how
the environment is modified by the actions performed by
the process and how actions that the process can perform
are constrained by the environment. To this purpose, we in-
troduce an environment-sensitive labelled transition system
(written e.s.–lts in the sequel), whose states areconfigura-
tions σ . P, whereσ is the current environment andP is a
process. Transitions between configurations represent inter-
actions betweenσ andP, and take the form

σ .P
µ

|−→
δ

σ ′ .P′

whereµ is the action of processP andδ is the complemen-
taryenvironmental action. More precisely,µ can be of three

forms: an internal action –τ – an input –aM – or an out-
put –(ν b̃)a〈M〉. The latter makes explicit the private names
b̃ that are being extruded. Accordingly, the environmental
actionδ is a ‘no–action’, an output or an input. Therefore,
three kinds of transitions may arise:

1. The process performs an output and the environment
an input. As a consequence, the environment’s knowl-
edge gets updated. For instance:

σ .P
(ν b̃)a〈M〉

|−−−−−−→
z(x)

σ [M/x].P′

whereσ [M/x] is the update ofσ with the new entry
[M/x], for a fresh variablex. Here,b̃ is the set of pri-
vate names the process extrudes. For the transition to
take place, channela must belong to the knowledge of
σ , which in this case amounts to saying thatσ(z) = a.

2. The process performs an input and the environment an
output. Notice that messages from the environments
cannot be arbitrary, but must be built via encryption,
decryption, pairing and projection from the messages
recorded inσ , plus some fresh names the environment
can create. Thus, a transition might be:

σ .P
aM

|−−−−−→
(ν b̃)z〈ζ 〉

σ [b̃/̃b].P′.

Here,b̃ is the set of new names the environment has
just created and added to its knowledge, whileζ is
an expression describing howM has been built out
of σ andb̃. This expression uses the variables in the
domain ofσ . For example, ifσ = [c/x1,

k/x2, . . .]
andM = {c}k, thenζ might be{x1}x2

, indicating that
messageM results from encrypting thex1–entry using
the x2–entry as a key. Again,a must belong to the
knowledge ofσ , thusσ(z) = a.

3. The process performs an internal move and the envi-
ronment does nothing:

σ .P
τ

|−→
−

σ .P′.

Having introduced the e.s.–lts, we can define a new equiva-
lence on top of it. The equivalence should only relate con-
figurations that exhibit equivalent environments. Informally,
two environments are equivalent if there is no way of telling
them apart by performing elementary operations (like pro-
jection, decryption, comparison and so on) on their entries.

For instance,σ def= [a/x,b/y,{a}k/z] andσ ′ def= [a/x,b/y,{b}k/z]
are equivalent, whileσ [k/w] andσ ′[k/w] are not, becausek
enables decryption of thez-entry, and then comparing the
obtained cleartext with the first two entries yields different
results. A formalization of these concepts can be found in
[10]; for our purposes, this informal explanation suffices.
The point of view is taken that two equivalent configurations

4 JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

4.2. Sound Reasoning Principles

should exhibit thesame environmental actions, no matter
what the process actions are. These consideration lead to the
definition below. We write|=⇒ for the reflexive and transitive

closure of
τ

|−→
−

(i.e., a sequence of zero or more
τ

|−→
−

transi-

tions) and, inductively,
s|=⇒
u

for |=⇒
µ

|−→
δ

s′|==⇒
u′

whens= µ · s′

andu = δ ·u′. With this notation we have:

Definition 3(e.s. trace equivalence)Let σ1 and σ2 be
equivalent environments. Given two processesP andQ, we
write (σ1 , σ2) ` P'tr Q iff, wheneverσ1 .P

s|=⇒
u

σ ′1 .P′,

there ares′, σ ′2 andQ′ such thatσ2.Q
s′|=⇒
u

σ ′
2.Q′ andσ ′1 is

equivalent toσ ′2 , and symmetrically forσ2 .Q.

This definition highlights a major difference between theπ-
calculus and the spi-calculus. In theπ-calculus ‘exact’ cor-
respondence is required between actions of two equivalent
processesP andQ, in the sense that ifP is capable of an
α–action, thenQ must be capable ofα too. On the contrary,
the presence of cryptography in the spi-calculus allows for
a ‘looser’ correspondence. In fact, encrypting two different
messages with a secret key makes the two messages indis-
tinguishable for any external observer. Hence, for example,

the processesP
def= (ν k)c〈{a}k〉.0 andQ

def= (ν k)c〈{b}k〉.0
are equivalent, even though they do not perform the same
(process) actions.
Trace equivalence avoids quantification over contexts and
only requires considering transitions of the e.s.–lts. Thus,
when compared to the contextual definition of may testing,
trace equivalence make reasoning on processes much easier.
The following theorem ensures that'tr is a sound and com-
plete characterization of may-testing equivalence' . We
denote byεV the environment that acts as the identity on the
set of namesV.

Theorem 1:Let P and Q be spi-processes, and letV =
fn(P,Q). It holds that(εV , εV) ` P'tr Q iff P ' Q.

A similar result holds for barbed equivalence and an
environment-sensitive version of bisimulation.

4.2. Sound Reasoning Principles

Trace equivalence can be used to justify some rules for
syntax–driven reasoning, which are at the core of a sound
and complete proof system for the spi-calculus [11]. The
rules we are going to list are valid for both bisimulation and
trace equivalence. Thus, in what follows, we shall generi-
cally write (σ1 , σ2) ` P = Q to mean that the configura-
tionsσ1.P andσ2.Q are equivalent, without specifying the
actual equivalence.

Structural Laws. Table 2 lists a few fundamental equa-
tions, mostly inherited from theπ-calculus [24], that are
valid for any ‘reasonable’ process equivalence. Most of
them have to do with ‘static’ structure of processes. Usu-
ally, the last three equations are not included in structural

P + 0≡ P P + Q≡Q + P
P + (Q + R)≡ (P + Q) + R

P|0≡ P P|Q≡Q|P
P| (Q |R)≡ (P|Q) |R

P| ! P≡ ! P

(ν b)0≡ 0
(ν a)(ν b)P≡ (ν b)(ν a)P
((ν a)P) |Q≡ (ν a)(P|Q) if a 6∈ fn(Q)

[M = M]P≡ P (ν n)[n = M]P≡ 0 if M 6= n

case{N}kof {y}k inP≡ P[N/y]

pair 〈M1,M2〉 of 〈x,y〉 in P≡ P[M1/x,M2/y]

Table 2
Structural Equivalence

equivalence; we have included them here because they are
natural in a cryptographic setting. The least equivalence re-
lation over process terms that contains these equations is
denoted by≡ and calledstructural equivalence. One can
easily prove the following rule sound:

P≡Q

(σ , σ) ` P = Q

In our example of Section 4.3. we shall make extensive use
of two laws derived from structural equivalence. The first
one is the so calledextrusion law:

(EXTR)
k 6∈ fn(Q)

(σ , σ) ` ((ν k)P) |Q = (ν k)(P|Q)

It states that, if a restricted namek of P does not occur in a
processQ running in parallel withP, then the scope of the
restriction can be extended so as to includeQ.
The second law we shall use is actually a pair of laws (that
we shall globally refer to as (MATCH)) derivable from the
structural laws for the matching predicate[M = N]. In what
follows, we callcontexta processC[· , . . . , ·] with n ‘holes’
that can be filled withn terms, thus yielding a proper pro-
cess.

(MATCH)

(σ , σ) ` C[P + [M = M]Q] = C[P + Q]

M is not a name bound by(ν n)C[·]

(σ , σ) ` (ν n)C[P + [n = M]Q] = (ν n)C[P]

Transitivity. We shall also widely use the obvious transi-
tivity rule:

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

5

(TRANS)

(σ1 , σ2) ` P = Q ∧ (σ2 , σ3) `Q = R

(σ1 , σ3) ` P = R

Parallel composition. The spi–representation of a secu-
rity protocol is usually built up by putting in parallel a few
simple spi–processes, corresponding to the principals in-
volved in the protocol. A desirable property of each pro-
cess calculus is that equivalence proofs can be donecom-
positionally, i.e. by proving equivalences between subpro-
cesses and then combining together such partial results to
get the wanted claim. Unluckily, observational equivalences
on the of spi-calculus are not closed under some operators,
notably parallel composition. In particular, a naive law like

(σ1 , σ2) ` P = Q ∧ (σ1 , σ2) ` R= S

(σ1 , σ2) ` P|R= Q|S
is not valid. This is due to the interplay between cryptogra-
phy and private names. As we have already shown at the be-
ginning of Subsection 4.1, a private namek can be extruded
and hence become free, without this implying thatk is learnt
by any observer. As a consequence, we are sometimes con-
fronted with equivalences like:(σ1 , σ2) ` c〈{a}k〉.P1 =
c〈{b}k〉.P2 where bothσ1 andσ2 know a, b andc, but nei-
ther knowsk. In general, this kind of equations are not pre-
served by parallel composition. For instance, when putting

R
def= c〈k〉.0 in parallel to both sides of the previous relation,

the equivalence breaks down. The reason is thatRmay pro-
vide an observer with the keyk to open{a}k and{b}k, thus
enabling a distinction between these two messages. Similar
problems arise from the output prefix (see [11] for a gen-
eral discussion about problems arising with compositional
reasoning in the spi-calculus).
Fortunately, a more restrictive formulation does hold. Let us
denote byRσ the result of replacing each namex occurring
free inR by σ(x). Then we have:

(PAR)
(σ1 , σ2) ` P = Q

(σ1 , σ2) ` P|Rσ1 = Q|Rσ2

if fn(R)⊆ dom(σ1) = dom(σ2)

The side condition reduces the set of processes that can be
composed withP and Q, by requiring that the composed
processes are consistent with the knowledge available toσ1
andσ2. In spite of this limitation, the rule allows for non
trivial forms of compositional reasoning, as shown in [11].

case elimination. A common situation for an agent in-
volved in a protocol is waiting for a message and then try-

ing to decrypt it using a keyk. This is written asP
def=

p(x).casexof {y}k inP′. Now, suppose that, in some con-

figuration, P comes equipped with an environmentσ def=
σ ′[{b}k/w], such that neitherk nor {·}k appears inσ ′. Be-
foreP evolves, the only message of the form{·}k thatσ can
produce is{b}k. In other words the only messageP can re-
ceive and then properly decrypt usingk is {b}k. Thus the
behaviour ofP in σ is equivalent top(x). [x = {b}k]Q[b/y].
The rule below generalizes this reasoning. We use the nota-
tion ∑n

i=1Pi to denote the processP1 + . . .+Pn (this notation
is well–defined since the non–deterministic choice is asso-
ciative).

(CASE)

(σ , σ) ` (ν h̃,k) (C[{M1}k, . . . ,{Mn}k] |
D[casexof {y}k in Q]) =

(ν h̃,k) (C[{M1}k, . . . ,{Mn}k] |
D[∑n

i=1[x = {Mi}k] Q[Mi/y]])

If k does not occur in contextsC[·, . . . , ·] and D[·]
and C[·, . . . , ·] does not bind names inMi , ∀ i = 1, . . . ,n

4.3. The Kerberos Example

Specification. For the sake of readability, we will use in
the sequel a few obvious notational shorthands. For example
a(〈y,z〉).P stands fora(x).pair x of 〈y,z〉 in P, a({M}k).P
stands fora(x).casexof {y}k in [y= M]P, anda({M,N}k).P
stands fora(x).casexof {y}k in pair y of 〈z, t〉 in [z= M, t =
N]P.
Table 3 gives a high level specification of the protocol us-
ing these abbreviations, while Table 4 gives its translation
into the syntax of Table 1. All bound names inK are as-
sumed to be distinct from one another and from free names.
Subscripts should help reminding the expected value of each
input variable. For instance, the expected value forxcertB is
B’s certificate, i.e.{T,kAB,A}kBS

. NamesA andB play the
roles of identifiers for the two principals involved (initiator
and responder, respectively);inA andreBare shorthands for
the processes that formalize the behaviour of these princi-
pals.
When starting the protocol execution, all the principals im-
plicitly synchronize on the current timeT (clock〈T〉). This
is an approximation of what happens in practice, as the spi-
calculus does not provide explicit timing constructs to im-
plement secure clock synchronization (a difficult task, which
may require complex interactions). Note thatreBchecks the
presence of the timestampT in the first received message
and rejects any message not containingT.
Outputs at channelscommitA andcommitB are used to sig-
nal that inA and reB have completed successfully the pro-
tocol. For readability, we have omitted the messages car-
ried by these two actions, which are irrelevant here. The
lost-output action accounts for the accidental loss of an old
session keykold and of the corresponding certificate forB,
{Told,kold,A}kBS

.

Intuitively, everything works well because the long term

6 JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

4.3. The Kerberos Example

inA
def= cAS〈A,B〉. cAS({T,xkAB

,B,xcertB
}kAS

).cAB〈xcertB
,{A,nA}xkAB

〉.cAB({nA}xkAB
).commitA〈〉.0

reB
def= cAB({T,ykAB

,A}kBS
,{A,ynA

}ykAB
).cAB〈{ynA

}ykAB
〉. commitB〈〉.0

S
def= cAS(A,B).cAS〈{T,kAB,B,{T,kAB,A}kBS

}kAS
〉.0

L
def= lost〈{Told,kold,A}kBS

,kold〉.0
C

def= clock〈T〉.0
K

def= (ν kAS,kBS)(L | (ν T)(C | ((ν nA)inA) | reB| ((ν kAB)S)))

Table 3
The Kerberos Protocol in spi-calculus

inA
def= cAS〈A,B〉.cAS(x1).casex1of {x′1}kAS

in pair x′1 of 〈xT ,xkAB
,xB,xcertB

〉 in

[xT = T,xB = B] cAB〈xcertB
,{A,nA}xkAB

〉.cAB(x2). [x2 = {nA}xkAB
]commitA〈〉.0

reB
def= cAB(y).pair y of 〈y1,y2〉 in casey1of {y′1}kBS

in pair y′1 of 〈yT ,ykAB
,yA〉 in

[yT = T,yA = A] casey2of {y′2}ykAB
in pair y′2 of 〈y′A,y′nA

〉 in

[y′A = A]cAB〈{y′nA
}ykAB

〉.commitB〈〉.0
S

def= cAS(z).pair zof 〈zA,zB〉 in [zA = A,zB = B]cAS〈{T,kAB,B,{T,kAB,A}kBS
}kAS

〉.0

Table 4
Full details ofinA, reBandS for the Kerberos Protocol

keys kAS and kBS remain secret. Of course, if an intruder
could forge e.g.kBS, it would be possible for him to cre-
ate a new certificate (with the current timestamp but with a
non-authentic key) and it would be impossible forB to de-
tect the event. Note that the system is not specified so as
to guarantee that a commit will eventually be reached: we
are only interested in checking that no ‘wrong’ commit will
ever happen.

Verification. We will consider authentication of the ses-
sion key:“ B andA only accept the keykAB generated byS” .
Formally, we want to prove that

(εI , εI) ` K = Kaut,

where εI denotes the environment that acts like

the identity on the set of namesI
def= fn(K,Kaut) =

{clock, lost, cAS, cBS, cAB, commitA, commitB, A,
B, Told, kold} and Kaut, defined below, formalises the
desired protocol’s behaviour.inAaut andreBaut can commit
only upon receipt of the expectedkAB generated byS; in
fact, note thatKaut is obtained fromK’s definition by adding
the matchings[xkAB

= kAB] and[ykAB
= kAB] in inA andreB

respectively, upon reception of their certificates.

inAaut
def= cAS〈A,B〉.cAS({T,kAB,B,xcertB

}kAS
).

cAB〈xcertB
,{A,nA}kAB

〉.cAB({nA}kAB
).

commitA〈〉.0
reBaut

def= cAB({T,kAB,A}kBS
,{A,ynA

}kAB
).

cAB〈{ynA
}kAB

〉.commitB〈〉.0
Kaut

def= (ν kAS,kBS,kAB)(L |
(ν T)(C | ((ν nA)inAaut) | reBaut |S))

We will prove the desired equality by applying the laws of
Section 4.2. The proof consists of three steps:

(i) By (EXTR), (εI , εI) ` K =
(ν kAS, kBS, kAB, nA, T)(L |C | inA|S| reB). By
(CASE) applied to case x1 of . . . in inA, then by
structural equivalence (axiom for pair splitting) and
finally by (TRANS), we obtain (εI , εI) ` K =
(ν kAS, kBS, kAB, nA, T)(L |C | inA′ |S| reB), where

inA′ def= cAS〈A,B〉.cAS(x1).
[x1 = {T,kAB,B,{T,kAB,A}kBS

}kAS
]

cAB〈{T,kAB,A}kBS
,{A,nA}kAB

〉.
cAB(x2). [x2 = {nA}kAB

] commitA〈〉.0 .

(by (MATCH), we have deleted the tautolog-
ical matchings [T = T,B = B]). We can
now apply (CASE) to case y1 of . . . in reB
and similarly we obtain (εI , εI) ` K =
(ν kAS, kBS, kAB, nA, T)(L |C | inA′ |S| reB1)
where

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

7

reB1
def=

cAB(y).pair y of 〈y1,y2〉 in (
[y1 = {T,kAB,A}kBS

,T = T,A = A]
casey2of {y′2}kAB

in pair y′2 of 〈y′A,y′nA
〉 in

[y′A = A] cAB〈{y′nA
}kAB

〉.commitB〈〉.0 +

[y1 = {Told,kold,A}kBS
,Told = T,A = A]

casey2of {y′2}kold
in pair y′2 of 〈y′A,y′nA

〉 in

[y′A = A] cAB〈{y′nA
}kold

〉.commitB〈〉.0)

By (MATCH), we can delete the tautological match-
ings[T = T,A= A] from the first summand and delete
the second summand (the latter is stuck because of the
failure of the matching betweenT andTold). Hence,
by (TRANS), we have

(εI , εI) ` K = (ν kAS, kBS, kAB, nA, T)
(L |C | inA′ |S| reB′) (1)

where
reB′ def= cAB(y).pair y of 〈y1,y2〉 in

[y1 = {T,kAB,A}kBS
]

casey2of {y′2}kAB
in

pair y′2 of 〈y′A,y′nA
〉 in [y′A = A]

cAB〈{y′nA
}kAB

〉.commitB〈〉.0.

(ii) Similarly, (εI , εI) ` Kaut =
(ν kAS, kBS, kAB, nA, T)(L |C | inA′ |S| reBaut).
Then, applying (CASE) to case y1 of . . .
in reBaut, we obtain (εI , εI) ` Kaut =
(ν kAS, kBS, kAB, nA, T)(L |C | inA′ |S| reB′aut)
where

reB′aut
def=

cAB(y).pair y of 〈y1,y2〉 in (
[y1 = {T,kAB,A}kBS

,T = T,A = A]
[kAB = kAB] casey2of {y′2}kAB

in

pair y′2 of 〈y′A,y′nA
〉 in [y′A = A]

cAB〈{y′nA
}kAB

〉.commitB〈〉.0 +

[y1 = {Told,kold,A}kBS
,Told = T,A = A]

[kold = kAB] casey2of {y′2}kold
in

pair y′2 of 〈y′A,y′nA
〉 in [y′A = A]

cAB〈{y′nA
}kold

〉.commitB〈〉.0)

Again by (MATCH), we can delete the tautological
matchings from the first summand and delete the sec-
ond one, obtaining

(εI , εI) ` Kaut = (ν kAS, kBS, kAB, nA, T)
(L |C | inA′ |S| reB′) (2)

(iii) The right hand sides of (1) and (2) are the same.
Hence by (TRANS), we obtain the desired(εI , εI) `
K = Kaut.

Finally, notice that without the matching[yT = T] in reB’s
definition, the equivalence would be broken. In particular,

upon receipt of{Told,kold,A}kBS
, reB would perform a fi-

nal commitB, which reBaut cannot do. In essence, remov-
ing the check[yT = T] would recreate the well-known at-
tack against the Needham-Schroeder protocol with symmet-
ric encryption (see e.g. [13]).

5. Trace Analysis

We outline here a verification method that departs from the
concept of observational equivalence discussed in the previ-
ous section. The method is based on analysing the execution
traces of a single process representing the protocol. Recall
that atrace is a sequence of I/O events (actions) executable
by a given spi-calculus process. Roughly, a sensible way
of expressing authentication ofA towardsB, in our version
of Kerberos, is requiring that, in every trace generated by
K, B’s final input action is preceded by anA’s output of the
same message, i.e.B will only accept messages originating
from A (similarly for authentication in the other direction).
Trace-based formalizations of authentication and secrecy
are generally less demanding than equivalence-based formu-
lations, but more amenable to automatic checking. We will
say more on the relationship between the two approaches in
Section 6.
The interaction of each participant with the the external en-
vironment gives rise to infinitely many traces. A crucial as-
pect of the trace analysis method issymbolicexecution [7],
which avoids this form of state-explosion. Symbolic execu-
tion has been implemented as part of a prototype verification
tool named STA (Symbolic Trace Analyzer), implemented in
ML [8].
In the rest of the section we will first outline the model un-
derlying trace analysis, then touch upon symbolic execution
and finally re-consider the Kerberos example in the light of
trace analysis.

5.1. Overview of the Model

The model underlying the trace analysis method is very
close in spirit to Dolev-Yao’s one [16]. Informally, agents
executing the protocol communicate through a network of
public channels that are under the control of an adversary,
therefore there are no private channels. Sending a mes-
sage just means handing the message to the adversary. Con-
versely, receiving a message just means accepting any mes-
sage among those the adversary can produce. The adver-
sary records all messages that transit over the network, and
can produce a message by either replaying an old one, or
by combining old messages (e.g. by pairing, encryption and
decryption) and/or by generating fresh quantities.
Formally, a state of the system is a pairs. P, calledcon-
figuration: s is a trace of past I/O events (actions), and rep-
resents the current adversary’s knowledge;P is a spi-term,
describing the intended behavior of honest participants. The
dynamics of configurations is given by a transition relation
−→ that describes elementary steps of computations be-
tween two configurations. In Table 5 we report the rules

8 JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

5.2. Symbolic Execution

defining the transition relation, for a subset of the language
introduced in Section 2. In particular, since we are looking
for an automatic method, we have omitted replication, which
would make the problem undecidable (see e.g. [17]). Rules
(INP) and(OUT) concern sending and receiving messages,
respectively. Since sending a message just means handing
the message to the adversary, any output actiona〈M〉 fired
by a process is recorded in the adversary’s current knowl-
edges (rule (OUT)). Conversely, receiving a message just
means accepting any message among those the adversary
can produce. Therefore, in rule(INP) the variablex can be
replaced by any messageM non–deterministically chosen
among those the adversary can synthesize from its current
knowledges. The synthesis of a messageM from a set of
known messagesS is formalized by a deduction relatioǹ.
Here is a sample of deduction rules defining` (see [7]):

M ∈ S

S` M

S` M S` k

S` {M}k

S` {M}k S` k

S` M

The other operational rules in Table 5 govern how a
process decrypts a message (caseM of {y}k inP), splits a
pair (pair 〈M,N〉 of 〈x,y〉 in P), compares two messages for
equality ([M = N]P), handles a new name ((ν a)P) and in-
terleaves execution of parallel threads (P|Q).
It is worthwhile to point out that, like in [28, 19, 6], there is
no need for an explicit description of the adversary’s behav-
ior, as the latter is wholly determined by its current knowl-
edge – thes in s.P – and by the deduction relatioǹ. This
is somehow in contrast with other proposals [22, 27], where
the adversary must be explicitly described.
Given a configurations. P and a traces′, we say thats. P
generatess′ if s.P −→∗ s′ .P′ for someP′ (−→∗ is the re-
flexive and transitive closure of−→ , i.e. zero or more steps
of −→). We express properties of the protocol in terms of
the traces it generates. In particular, we focus on correspon-
dence assertions of the kind

for every generated trace, if actionβ occurs in
the trace, then actionα must have occurred at
some previous point in the trace

that is concisely written asα ←↩ β . More accurately, we
allow α and β to contain free variables, that may be in-
stantiated to ground values. Thusα ←↩ β actually means
that every instanceof β must be preceded by the corre-
sponding instance ofα, for every generated trace. We write
s. P |= α ←↩ β if the configurations. P satisfies this re-
quirement. This kind of assertions is flexible enough to ex-
press interesting secrecy and authentication properties. As
an example, the final step of many key-establishment pro-
tocols consists inA’s sending a message of the form{N}k
to B, whereN is some authentication information, andk the
newly established key. A typical property one wants to ver-
ify is that any message encrypted withk that is accepted by
B at the final step should actually originate fromA (this en-
suresBhe is really talking toA, and thatk is authentic). If we
call finalA andfinalB the labels attached toA’s andB’s final

(INP) s.a(x).P −→ s·a〈M〉.P[M/x]

if s ` M andM is closed

(OUT) s.a〈M〉.P −→ s·a〈M〉.P

(CASE) s. case{M}kof {y}k inP −→ s.P[M/y]

(SPLIT) s.pair 〈M,N〉 of 〈x,y〉 in P −→
−→ s.P[M/x, N/y]

(MATCH) s. [M = M]P −→ s.P

(RES) s. (ν a)P −→ s[a′/a].P[a′/a]

if a′ is fresh fors

(PAR)
s.P −→ s′ .P′

s.P |Q −→ s′ .P′ |Q

plussymmetric version of (PAR).

Table 5
Transition relation on Configurations (−→)

action, respectively, then the property might be expressed by
finalA〈{x}k〉 ←↩ finalB〈{x}k〉, for x a variable. The scheme
also permits expressing secrecy as a reachability property
(in the style of [5, 19]): this will be further discussed in Sec-
tion 6.

5.2. Symbolic Execution

When synthesizing new messages, the adversary can apply
operations like pairing, encryption and generation of fresh
names, an arbitrary number of times. Thus the set of mes-
sages the adversary can synthesize at any time is actually in-
finite. Any such message can be non-deterministically cho-
sen by the adversary and sent to a participant willing to re-
ceive it; therefore every model based on Dolev and Yao’s
is in principle infinite. Our model makes no exception: in
rule (INP) the set ofM s.t. s ` M is always infinite, and this
makes the model infinitely-branching. This can be regarded
as a state explosion problem induced by message exchange.
To overcome this problem, the STA tool implements a veri-
fication method based on a notion of symbolic execution. A
new transition relation (written−→

S
below) is introduced in

order to condense the infinitely many transitions that arise
from an input action (rule (INP) in Table 5) into a single,
symbolictransition. The received message is now repre-
sented simply by a free variable, whose set of possible val-
ues is constrained as the execution proceeds. Technically,
a constraint takes the form ofmost general unifier(mgu),
i.e., the most general substitution that makes two expres-
sions equal. The set of traces generated using the symbolic

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

9

transition relation constitutes thesymbolic modelof the pro-
tocol. Differently from the standard model given by−→ ,
the symbolic model is finite, because each input action just
gives rise to one symbolic transition and agents cannot loop.
For a flavor of how symbolic execution works, let us con-
sider an example focusing on shared-key encryption. Sup-
pose that agentP, after receiving a message, tries decrypting
this message using keyk; if this succeeds andy is the result,
the agent checks whethery equalsb and, if so, proceeds like

P′. This is written asP
def= a(x).casexof {y}k in [y = b]P′,

for y fresh. Let us explain how the symbolic execution
proceeds, starting from the initial configurationε . P. Af-
ter the first input step, in the second step the decryption
casexof {y}k in · · · is resolved by unifyingx and{y}k, which
results in the substitution[{y}k/x]. In the third step, the
equality test[y = b] is in turn resolved by unifyingy and
b, that results in[b/y]. Formally,

ε .P −→
S

a〈x〉. casexof {y}k in [y = b]P′

−→
S

a〈{y}k〉. [y = b]P′[{y}k/x]
−→

S
a〈{b}k〉.P′[{y}k/x][b/y].

An important point is that symbolic execution actually ig-
nores the deduction relatioǹ and thus may give rise to
“inconsistent” symbolic traces. These inconsistencies can
be detected and discarded via a refinement procedure, de-
scribed in [7].
The verification method based on symbolic execution is
proven sound and complete w.r.t. the standard model, in
the sense that every consistent attack detected in the sym-
bolic model (relation−→

S
) corresponds to some attack in

the standard model (relation−→), and vice-versa. In other
words, the symbolic model captures all and only the at-
tacks of the standard model. For instance, the method de-
tects type-dependent attacks, which usually escape finite-
state analysis, e.g. [23]. In this kind of attacks, the adver-
sary cheats on the type of some messages, e.g. by inserting
a nonce where a key is expected according to the protocol
description.

5.3. The Kerberos Example

We illustrate the trace analysis method and the use of the
automatic tool STA on the simplified Kerberos protocol of
Section 3. The tool follows the syntax and semantics of
the formal model, with a few minor differences. E.g., ac-
tion prefixing is written>>, parallel composition is written
|| , restriction is writtennew-in , while 0 is writtenstop .
Output actions are written asa!M , while input actions are
written asa?M. The latterMcan be a generic message pat-
tern: this means receiving any adversary-generated message
whose form matchesM. To this purpose, we distinguish ex-
plicitly between names and variables (the latters, by conven-
tion, start byx , y , . . .). Finally, we denote by<-- the cor-
respondence predicate←↩, and bys @ Pthe configuration
s.P, wheres is represented as a list of actions .
Table 6 contains the complete STA script defining one ses-
sion of Kerberos, and the desired authentication properties.

Since all channels are public and controlled by the environ-
ment, we have made all channel names distinct and used
them just as references for process actions. Also, we need
not make commit actions explicit now, thus we have dropped
them. Conf is the initial configuration of the protocol,
composed by an empty list of actions and byK, while Au-
thKey , AuthAtoB andAuthBtoA represent the proper-
ties we want to check of this configuration.AuthKey states
that any message accepted byA ata2 should originate from
S: this implies the adversary cannot foolA into accepting a
key different fromkAB. PropertyAuthAtoB states that any
message accepted byB atb1 should originate fromA ata3 .
AuthBtoA can be explained similarly. The three properties
together guarantee thatA andB always talk to each other and
that they agree on the exchanged data (in particular, on the
established key), which are authentic.
If we ask STA to check any of the three properties listed
above, we get this answer:

> val it = "No attack was
found, 61 symbolic configu-
rations reached." : string

which means that STA has explored the whole symbolic
state-space of the protocol, consisting of 61 configurations,
without finding any trace violating the property (this explo-
ration takes STA a fraction of a second). Thus there are no
attacks on this configuration of the protocol.
Suppose now we modifyB so that it omits the check on the
freshness ofT, i.e. we re-define

val reB = b1?({t,ykAB,A }kBS, {A,ynA }kAB)
>> b2! {ynA}ykAB >> stop;

where we have replaced the timestampT by an aritrary vari-
ablet in b1 . STA finds an attack on the propertyAuthA-
toB . The attack is reported under the form of a trace violat-
ing the property:

> val it = "An attack was found:
lost!(kOld, {TOld,kOld,A }kBS).
clock!T. a1!(A,B).
b1?({TOld,kOld,A }kBS, {A,ynA }kOld)

4 symbolic configurations
reached." : string

The attack is based on the adversary’s replaying the old,
compromised keykOld and the corresponding certificate
{TOld,kOld,A }kBS acquired thanks to thelost action.
Note that the trace contains a free variableynA: it can take
on any value which is known to the attacker.

6. A Comparison

The reason for considering two models – the equivalence-
based one and the trace-based one – of the same language
is mostly pragmatic. A major advantage of observational
equivalences is a host of syntax-driven reasoning rules, that
in some specific cases may be adequate for reasoning “with

10 JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

5.3. The Kerberos Example

val inA = nA new-in (a1!(A,B) >> a2? {T,xkAB,B,xCertB }kAS >>
a3!(xCertB, {A,nA }xkAB) >> a4? {nA}xkAB >> stop);

val S = kAB new-in (s1?(A,B) >> s2! {T,kAB,B, {T,kAB,A }kBS}kAS >> stop);
val reB = b1?({T,ykAB,A }kBS, {A,ynA }ykAB) >> b2! {ynA}ykAB >> stop;
val K = kAS new-in kBS new-in (lost!(kOld, {TOld,kOld,A }kBS)>>stop ||

T new-in (clock!T >> stop || inA || reB || S));
val Conf = ([] @ K);
val AuthKey = (s2!t <-- a2?t);
val AuthAtoB = (a3!u <-- b1?u);
val AuthBtoA = (b2!w <-- a4?w);

Table 6
Encoding Kerberos protocol in STA

paper and pencil” on infinitary processes (i.e. processes
that use replication) as well. At present, we lack theory
and automatic tools for checking equivalences between spi-
processes. On the other hand, the trace-based approach is
automatic, but limited to finite (i.e. replication-free) pro-
cesses.

An important problem left open by current research is that of
establishing a formal relationship between the two models,
and the notions of authentication and secrecy conveyed by
them. Below, we try a first comparison. We shall confine
our discussion to secrecy, but we feel that similar arguments
apply to the case of authentication.

The equivalence-based formalization is seemingly more de-
manding than the trace-based one. In fact, the former takes
into account the overall behaviour of the protocol, while the
latter takes into account only correspondence between single
actions, or exposure of secret data items. In fact, we are only
able to prove here that T-secrecy does not imply E-secrecy.
First of all, let us state more precisely the two notions of
secrecy we are interested in.

Definition 4(two notions of secrecy)Let P(x) be a spi-
calculus process. We say that:

• P(x) keepsx E-secretif for everyx′: P(x) ' P(x′);

• P(x) keepsx T-secretif there is no configurations′ .P′
s.t. ε .P(x) −→∗ s′ .P′ ands′ ` x.

Now, consider the processP(x) def= (ν k)(a(y).[y =
x]b〈{x}k〉.0. The processP(x) keeps x T-secret (by
inspection), but not E-secret. In fact, consider the ob-

serverO
def= a〈x〉.b(z).ω.0: we haveP(x) |O ω=⇒ , but not

P(x′) |O ω=⇒ , henceP(x) 6' P(x′) for x′ 6= x. This shows
that E-secrecy is not implied by T-secrecy.

On the contrary, we conjecture that E-secrecy does imply T-
secrecy. Intuitively, it should be possible to uniformly trans-
form a tracesgenerated by a configuration s.t.s ` x into an
observer that detects the disclosure ofx. We leave the proof
of this conjecture for future work.

7. Concluding Remarks and Related
Work

We have outlined some recent approaches to the analysis of
security protocols, centered around concepts derived from
the field of process calculi, such as observational semantics
and symbolic transition systems.
Early work on reasoning methods for the spi-calculus was
presented in [4], whereframed bisimulationwas introduced
as a proof technique, though incomplete, for reasoning on
contextual equivalences. The environment sensitive transi-
tion system presented here was introduced in [10], and based
on that, the complete characterizations of contextual seman-
tics discussed in Section 4. were obtained. Some of the rea-
soning principles used in this paper were introduced there.
A sound and complete proof system for finite processes is
discussed in [11].
Concerning trace analysis, [7] develops the theory underly-
ing the verification tool STA, while [8] presents verification
examples and compares the results to those obtained using
finite-state methods. Initial work on symbolic analysis is
due to Huima [20]. Symbolic techniques are also exploited
in [5, 14, 30], but the algorithms they use are quite different
from ours.
A few very recent work conjugates the spi-calculus with al-
ternative formal approaches to security. Examples of these
techniques include the type systems for secrecy in [1] and
the one for authentication in [18], and the work on logic
programs in [2].
Finite-state model checking has proven very effective in
practice to find bugs in security protocols, e.g. [22, 23, 27].
When compared to these more traditional methods, major
benefits of the equivalence-based approach seem to be a host
of syntax-driven reasoning principles and a fully satisfac-
tory formalization of many important properties, including
implicit information flow (that may arise due, e.g., to traffic
analysis). On the other hand, the equivalence-based method
lacks at present automatic verification techniques. Sym-
bolic trace analysis appears to be closer in spirit to model
checking, but does not suffer from the state-explosion prob-
lems of model checking, which requires considering approx-
imate models, even when the number of protocol sessions
is bounded. Analysis of real-life case-studies could tell

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

11

whether the approaches derived from the spi-calculus may
represent a valid alternative to the established techniques.

Acknowledgments: We are very grateful to the editor for
a careful reading of the manuscript and for suggestions that
helped us to improve the paper.

References
[1] M. Abadi. Secrecy by Typing in Security Protocols.Journal of the

ACM, 46(5):749-786, Sept.1999.
[2] M. Abadi, B.Blanchet. Analyzing Security Protocols with Secrecy

Types and Logic Programs.POPL’02, ACM Press, 2002.
[3] M. Abadi, A.D. Gordon. A Calculus for Cryptographic Protocols:

the spi-calculus.Information and Computation, 148(1):1-70, 1999.
[4] M. Abadi, A.D. Gordon. A Bisimulation Method for Cryptographic

Protocols.Nordic Journal of Computing, 5(4):267-303, 1998.
[5] R.M. Amadio, S. Lugiez. On the Reachability Problem in Crypto-

graphic Protocols. InProc. of Concur’00, LNCS 1877, Springer,
2000. Full version: RR 3915, INRIA Sophia Antipolis.

[6] D. Bolignano. Towards a Mechanization of Cryptographic Protocol
Verification.International Conference on Computer Aided Verifica-
tion, LNCS, Springer, 1997.

[7] M. Boreale. Symbolic Trace Analysis of Cryptographic Protocols.
ICALP’01, LNCS 2076, pp.667-681, Springer-Verlag, 2001.

[8] M. Boreale, M.G. Buscemi. Experimenting with STA, a Tool for Au-
tomatic Analysis of Security Protocols.ACM Symposium on Applied
Computing 2002, ACM Press, 2002.

[9] M. Boreale, R. De Nicola. Testing Equivalence for Mobile Pro-
cesses.Information and Computation, 120: 279-303, 1995.

[10] M. Boreale, R. De Nicola, R. Pugliese. Proof Techniques for Crypto-
graphic Processes.LICS’99, Proceedings, IEEE Computer Society
Press, pp.157-166, 1999. Full version to appear inSIAM Journal on
Computing.

[11] M. Boreale, D. Gorla. On Compositional Reasoning in the Spi-
Calculus.FoSSaCS’02, Proceedings(M. Nielsen, H.U. Engberg,
Eds.),LNCS 2303, pp. 67-81, Springer-Verlag, 2002.

[12] J. BorgStr̈om, U. Nestmann. On Bisimulations for the Spi-Calculus.
Manuscript, available from http://lampwww.epfl.ch/∼uwe/doc/spi/,
2002.

[13] M. Burrows, M. Abadi, R. Needham. A Logic of Authentication.
ACM Transactions on Computer Systems, 8(1):18-36, 1990.

[14] H. Comon, V. Cortier, J. Mitchell. Tree Automata with One Memory,
Set Constraints and Ping-pong Protocols.ICALP’01, LNCS 2076,
pp.682-693, Springer-Verlag, 2001.

[15] R. De Nicola, M.C.B. Hennessy. Testing Equivalence for Processes.
Theoretical Computers Science, 34:83-133, 1984.

[16] D. Dolev, A. Yao. On the Security of Public-key Protocols.IEEE
Transactions on Information Theory, 2(29):198-208, 1983.

[17] N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov. Undecidability of
Bounded Security Protocols. InProc. of FLOC Workshop on Formal
Methods and Security Protocols, Trento, 1999.

[18] A.D. Gordon, A. Jeffrey. Authenticity by Typing for Security Pro-
tocols.14th IEEE Computer Security Foundations Workshop, pages
145-159, 2001.

[19] J. Goubault-Larrecq. A Method for Automatic Cryptographic Pro-
tocol Verification.Proc. 15th IPDPS Workshops, LNCS1800, pages
977-984, Springer 2000.

[20] A. Huima. Efficient Infinite-State Analysis of Security Protocols. In
Proc. of FLOC Workshop on Formal Methods and Security Proto-
cols, Trento, 1999.

[21] J. Kohl, B. Neuman. The Kerberos Network Authentication Service
(version 5). Internet Request For Comment RFC-1510, 1993.

[22] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key
Protocol Using FDR.TACAS’96, Proceedings(T. Margaria, B. Stef-
fen, Eds.),LNCS 1055, pp. 147-166, Springer-Verlag, 1996.

[23] G. Lowe. A Hierarchy of Authentication Specifications. InProc. of
10th IEEE Computer Security Foundations Workshop, IEEE Com-
puter Society Press, 1997.

[24] R. Milner. The Polyadicπ-calculus: a Tutorial. InLogic and Algebra
of Specification(F.L. Hamer, W. Brauer, H. Schwichtenberg, Eds.),
Springer-Verlag, 1993.

[25] R. Milner, J. Parrow, D. Walker. A Calculus of Mobile Processes,
(Part I and II).Information and Computation, 100:1-77, 1992.

[26] R. Milner, D. Sangiorgi. Barbed Bisimulation.ICALP’92, Proceed-
ings (W. Kuich, Ed.), LNCS 623, pp.685-695, Springer-Verlag,
1992.

[27] J.C. Mitchell, M. Mitchell, U. Stern. Automated Analysis of Cryp-
tographic Protocols Using Murϕ. In Proc. of Symp. Security and
Privacy, IEEE Computer Society Press, 1997.

[28] L.C. Paulson. The Inductive Approach to Verifying Cryptographic
Protocols.Journal of Computer Security, 6:85–128, 1998.

[29] D. Pointcheval. Asymmetric Cryptography and Practical Security.
This volume.

[30] M. Rusinowitch, M Turuani. Protocol Insecurity with Finite Num-
ber of Sessions in NP-Complete. In14th Computer Security Foun-
dations Workshop, IEEE Computer Society Press, 2001.

12 JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

