Process Calculi and the Verification of Security
Protocols

Michele Boreale Daniele Gorla
Dipartimento di Sistemi e Informatica, Univesidi Firenze
e-mail: {boreale,gorla }@dsi.unifi.it

Abstract — tic level, of such concepts as ‘nonce’ and ‘newly generated
Recently there has been much interest towards using formal key’. In a sense, the spi-calculus improves both the BAN
methods in the analysis of security protocols. Some recent ap- |ogic, which provides formal reasoning rules but not an op-
proaches take advantage of concepts and techniques from the erational model, and finite-state methods, which provide a
field of process calculi. Process calculi can be given a formal yet precise operational model but not a convenient basis for for-
simple semantics, which permits rigorous definitions of such mal reasoning. These features have led to the development

concepts as ‘attacker’, ‘secrecy’ and ?Uthem'c‘?‘t'on - This fea- of solid reasoning techniques and verification methods (e.g.
ture has led to the development of solid reasoning methods and . . .)
[4, 10, 5, 7, 8, 12]), a few of which we will survey in this

verification techniques, a few of which we outline in this paper. paper

In Section 2. we give a brief overview of the spi-calculus,
) mainly concentrating on syntax and informal explanation of
1. Introduction its operators. Section 3. is devoted to presenting a simplified
version of theKerberosprotocol [21], which will serve as a
Security protocols have become an essential ingredient ofunning example. While this small protocol is well suited for
communication infrastructures. When executed in a hostilglustrating the key ideas of the approaches presented here,
environment, these protocols may be subject to a number ofhe reader should be warned that proofs for more sophisti-
attacks, that can compromise the security of the data beingated, in particular multi-session, protocols require a higher
exchanged over a network. An attacker might typically learndegree of ingenuity (see [3, 10]). In Sections 4. and 5. two
a piece of information which is supposed to remain secret, oformal semantics of the spi-calculus are outlined: the first is
it might fool an agent into accepting a compromised key aspased orobservational equivalencethe second is centered
authentic. Proving a protocol resistant to such attacks is noaground the idea ofrace analysis Based on these seman-
toriously a difficult task. In the last decade, formal methOdStiCS, rigorous reasoning principles and verification methods
have been successfully used to analyse security protocolsre described. Section 6. discusses the relationship between
sometimes uncovering flaws in protocols that were thoughthe presented approaches, while Section 7. contains a few
to be correct. concluding remarks and comparison with related work.
The BAN logic [13] was one of the first, partially success-
ful attempts at using formal methods in the field of secu- . .
rity. Later on, finite-state model checking has been exten- 2. An Outline of the Spl-calculus
sively used (see e.g. [22, 27]). Some recent developments
of formal methods stem from concepts well established inln this section, we intend to give an informal account of the
the field of process calculi. In particular, Abadi and Gordon Spi-calculus, by concentrating on syntax and intuitive expla-
have proposed thepi-calculug3] by elaborating on Milner, nation. The reader is referred to [3, 10] for full technical
Parrow and Walker'st-calculus [25], a process language details.
based on synchronous message passing. The spi-calcullddiere are several versions of the spi-calculus. In the rest
extends thercalculus with cryptographic primitives, thus of this paper, we will consider a variant supporting shared-
allowing the description of security protocols as systemskey cryptography only. This limited language is sufficient
of concurrent processes that can exchange encrypted dati® illustrate the key ideas of the approach, while avoiding
The main advantage of this approach is that process calculinany technicalities.
can be given formal yet simple semantics that permit rigor-
ous definitions of such notions as ‘attacker’, ‘secrecy’ andSyntax. The syntax of the language is summarized in Ta-
‘authentication’. Another distinguishing feature of the spi- ple 1. A countable set afamesa,b...,h,k,...,x,y,z... is
calculus is its reliance on the powerful scoping constructsassumed. Names can be used as variables, communication
of the r-calculus to get a clean formalization, at a linguis- channels, primitive data or keys: we do not distinguish be-
- has b . 4 by EU within the FET - Global tween these four kinds of objects (notationally, we prefer
Comlsu\?ilr?; inﬁiﬁlti\(/eee,npprijrg?t)l/\/lslrlii%)(r)teIST};OOl-végzlgzt aend by M|8Ra lettersh, k,. .. when we want to stress the use of a name as a

project NAPOLI. The funding bodies are not responsible for any use thatk_ey)- Messa:ges are built via pairing and.Shared'key encryp-
might be made of the results presented here. tion. In particular{M}, represents the ciphertext obtained

JOURNAL OF TELECOMMUNICATIONS 1
AND INFORMATION TECHNOLOGY

by encryptingM under keyk, using a shared-key encryption
system. An informal explanation of the process operators
might be the following:

e Ois the process that does nothing;

e 7.P does one internal computation step (we do not

care precisely what), and then proceeds kke

e a(x).P waits for a message on chanreland then
binds it to variablex within P;

e a(M).P sends messadd on channeh and then be-
haves likeP;

e [M = NP behaves likeP if the messag® equalsN,
otherwise it is stuck;

e caseMof {y},inP attempts decryption ol usingk
as a key: if the decryption succeeds, i.eVlit= {M'},
for someM’, thenM’ is bound to variablg within P,
otherwise the whole process is stuck;

e pair M of (x,y) in P attempts splittingM; if this is
possible, i.e. iM is a pair(M’,N’), the two compo-
nentsM’ andN’ are bound, respectively, to variabbes
andy within P, otherwise the whole process is stuck;

ab....hk....xyz... names
M,N:= a | (M,N) | {M}, messages
PQ:= processes
0 null)
.P internal action
a(x).P input prefiy
a(M).P output prefiy

(

| (

| (

| (

| [M=N]P (match

| caseMof{y},inP (decryptiorn)
| pair M of (x,y) in P (splitting)

| (vb)P (restriction)
| (choice

| (parallel)

| (replication)

P+Q

PIQ
P

Table 1
Syntax of the calculus

probability, for real cryptosystems, that differgplaintext,
key) pairs collide onto the same ciphertext. The third as-
sumption is in practice implemented by attaching a crypto-
graphic checksum to every plaintext before encryption.
We fix now a few notational shorthands that will be used in

e (Vb)P creates a new nantewhich is only known to
P;

e P+ Q can behave either @ or Q: the choice may
be triggered either by the environment or by internal
computations oP or Q;

e P|Qis the parallel execution d&® andQ;

e ! P can be thought of as unboundedly many copies of
P running in parallel, i.e. aB|P|P] ---.

For the sake of simplicity, we are considering here neither
integer data values, present in [3], nor the general form of
boolean guard, used in [10]. In the definition of this lan-
guage there are a few implicit assumptions on the underlying
shared-key encryption system. We try to make them explicit
below:

1. AplaintextM encrypted under a kégcan only be de-
crypted using; if the attacker does not knoky he/she
cannot guess or forge this keyefect encryptio))

2. the only way to produce a ciphertext that looks like
{M}, is to encryptM underk;

3. there is enough redundancy in the structure of mes-
sages to tell whether a given ciphertext can be cor-
rectly decrypted with a given key.

° a(x).---

the remainder of the paper:

is a binder forx, case - of {y},in--- is a
binder fory, pair - of (X, y) in --- isabinder foxxand

y and restrictionvb)--- is a binder forb. An occur-
rence of a nam& is said to beboundwhen it occurs
inside the scope of a binder far Bound occurrences

of names can be renamed to fresh names without af-
fecting the meaning of a process term. We shall al-
ways assume that bound names are distinct from each
other and from names that are not bound.

Names that are not bound diree We use the no-
tation P(x) to emphasize that namemay occur free
(i.e. not in the scope of any binder fa) in P and,
for any messag#, write P(M) to abbreviateP[M/x]
i.e. P with each free occurence afreplaced byM.
The set of free names of a procé&swill be written as

fn(P).

[M = N,M’ = N’] stands for two consecutive match-
ings [M = N][M’ = N’|. Similarly, (va,b)P stands
for (va)(vb)P andpair M of (x,y,z) in P stands for
pair M of (x,I} in pair | of (y,2) in P. The tilde sym-
bol~ will be used to denote vectors of objects.

A small example illustrates the use of the calculus for de-

scribing cryptographic protocols.
The first assumption implies that we can say nothingExample 1:Consider the simple protocol where two prin-
about attacks that exploit probabilistic or statistical analysis,cipalsA andB share a private kei. A wants to send a
which may arise in practice, as showed in [29]. In fact, we datumd encrypted undek, through a public channel B
are concentrating on high-level, logical properties of proto-accepts any message encrypted Withat is sent along.

cols. The second assumption is an abstraction of the small

A — B: {d}, on channet.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

This informal notation can be translated into the spi-calculus A—S @ AB

process defined as follows: S—A 1 {TKag:BAT Kag: Al i
A L e{dy).0 A—B {TkegAh {AM}
B % ¢(x).casexof {y}¢inF(y) B—A : {nA}kAB'
def . .
P = (VK(A|B). In the first messagé starts the protocol by simply commu-

A stops after outputingd}, onc. B picks up any message nijcating toShis intention to establish a new connection with
from c and then tries to decrypt it USimg If decryption Suc- B. In the second messa@ﬁgenerates a fresh ké%B and
ceeds, the result is bound to variapleithin F(y). The lat- inserts it into an appropriate certificate, which is sentto

ter is some expression describing the subsequent behaviotthe certificate uses a timestaffipmeant to assur& andB

of B, depending on the result of the decryptignThe whole apout the freshness of the message: this is to counter attacks
prOtOCOIP is the parallel CompOSitiOA‘ B, with the restric- based on rep|ays of old messages. In the third mes%ge,
tion (vk) indicating that the ke is only known toA and extractsB's part of the certificate{(-- }i,0) and forwards it

B. to B, together with some challenge information containing
a new nonce,. The fourth message B's response té\'s

Onrestricted names. The restriction operator plays a cru- challenge: the presence 0f is meant to assura he is re-

cial role in the spi-calculus(v k)P makes the namk pri- ally talking toB.

vateto P. This resembles declarations of local variables |n the next two sections we shall verify, relying on two dif-

in structured programming languages. There is one cruciaferent techniques, a one session configuration of this pro-

difference, however: in spi-calculus, a restricted name canocol, under the hypothesis that an old sessionkey be-

be exportedoutside its original scope, while remaining dis- tweenA andB has been compromised. We shall not consider

tinct from every name of the recipient. As such, the restric-the multi-session case, which requires a more complex anal-

tion operator is ideal for modelling those “fresh unguessableysjs. For the sake of simplicity, we shall also suppose that

quantities” (like random numbers) that are an important in-the protocol is always initiated b and that the responder
gredient of many cryptographic protocols. The following js alwaysB.

equation, for instance, explains the creation of a namce
and its transmission from one principal to another, along a

private channet: 4. Observational Equivalences

Ve vn)Tt(n).A) | c(x). =T.

()((V). A) | e B(X)) r-(vem(AlBm) Following [3], a powerful way of expressing authentication

The symbol= above can be given a precise meaning in properties of a security protocél is to require that® is

terms of observational semantics, as we shall see in Segquivalento a proces§) that, by definition, exhibits the de-

tion 4. Informally, this equation says that the consumptionsired behaviour. In the case of authentication, for insta@ce,

of complementary input and output prefixe§q). andc(n).) never accepts non-authentic messages. Secrecy as well can

gives rise to an internal communication (represented by théde expressed via this notion of equivalence. For example, let

1. prefix) in whichn is communicated. This also causes the P(d) be a process in which a secret datdris exchanged,

scope of the restrictiofw n) to be extended so as to include properly encrypted, along a public channel. A way of assert-

B. The scope extension is capture-avoiding, in the sense thang thatP(d) keepsd secret is requiring tha&(d) be equiv-

n is automatically renamed if it happens to clash with somealent toP(d’), for every otherd’. An appropriate notion of

name inB. This kind of scope extension is referred to as equivalence is hemaay-testing15, 9, 3]. Its intuition is pre-

scope extrusian cisely thatho external observer (which in the present setting

A slightly more complicated equation holds wheis a pub- can be read as ‘attacker’) can notice any difference when,

lic, rather than private, channel. In this case, the equatiore.g., running in parallel withP(d’) or P(d). Formally, we

also explains the possible interaction of the two principalsdefine an observer as a process that is possibly capable of a

with the external environment alomg distinct ‘success’ actiomo; the latter is used to signal that
the observed process has passed observer’s test. If one inter-
prets ‘passing a test’ as ‘revealing a piece of information’,

3. The BAN Kerberos Protocol then processes that may pass the same tests may potentially

reveal the same information to external observers: as such,

We shall illustrate the techniques presented in later sectionﬁqey should be considered equivalent from a security point
on the version of the Kerberos protocol considered by Bur-o¢ e\, This also accounts for implicit information flow, by

rows, Abadi and Needham in [13]. This section is devoted,yhich an observer might extract useful information from the
to an informal presentation of this protocol. overall behaviour of a system.
Consider a system where two ageAtgthe initiator) and In the definition belowR == means thaR can execute

B (the responder) share two long-term secret kkysand ; .
) ; : ! zero or more internal computation steps, followed bywan
kg respectively, with a serve. The protocol is designed action

to set up a new secret session key betweenA and B.
Informally, the protocol can be described as follows: Definition 2(may-testing) Two spi-calculus processeP

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

andQ aremay-testing equivalentwritten P ~ Q, if for ev-
ery observeD, P|O =2 iff Q|0 ==

A similar intuition is supported by other contextual equiv-
alences, likebarbed equivalencf6]. While rigorous and
intuitive, the definitions of these equivalences suffer from

forms: an internal action + — an input -aM — or an out-
put—(vb)a(M). The latter makes explicit the private names
b that are being extruded. Accordingly, the environmental
action¢ is a ‘no—action’, an output or an input. Therefore,
three kinds of transitions may arise:

universal quantification over contexts (attackers), that makes 1. The process performs an output and the environment

equivalence checking very hard. It is then important to de-
vise proof techniques that avoid such quantification.
Results in this direction are well-known for traditional pro-
cess calculi. For example, both in CCS [15] and in the
calculus [9], may-testing is easily proven to coincide with
trace equivalencewhich requires that two equivalent pro-
cesses generate the same sequencastioins(l/O events).
Similarly, barbed equivalence is proved to coincide with
(early) bisimulation[25]. The latter requires that each ac-
tion of one process be ‘simulated’ by the other, and that the
target processes be still bisimilar. In this section we out-
line a way of obtaining similar results in the case of the spi-

calculus; full details can be found in [10]. We then discussa o

few resulting reasoning rules and apply them to the Kerberos
protocol.

4.1. A Labelled Transition System for the Spi-calculus

In non cryptographic calculi (like tha-calculus) processes
and observers share the same knowledge of names. This
means, in essence, that the external environment may en-
able any action that a process is willing to take. This is
not true anymore when moving to the spi-calculus. In fact,
consider the proced3that sends a fresh nanbeencrypted

with a fresh keyk and then executeR’. This is written
(vb,k)c({b},).P’. When an observer receivgb},, it does

not acquire automatically the knowledgelmfbecausé is

still secret. Thus, i’ is willing to input something &b (say

p & b(x).P"), the environment cannot satis®/’s expecta-
tions. For this reason, execution tracéek r-calculus fail

to capture the interactive behaviour of processes.

This discrepancy leads us to make the concepmrviron-
mentexplicit, as a record of the knowledge of names and
keys that an external observer has acquired about a certain
process. More precisely, we model an environment as a
mappingo from a set of variables to a set of messages. In-
tuitively, an environment is a set of locations named by dis-
tinct variables, where an observer (usually an attacker) will

an input. As a consequence, the environment’s knowl-
edge gets updated. For instance:

(vbja(m)
0>P—— agM/x>P
z(x)

whereg[M/x] is the update otr with the new entry
[M/x], for a fresh variable. Here,b is the set of pri-
vate names the process extrudes. For the transition to
take place, channalmust belong to the knowledge of

o, which in this case amounts to saying thdr) = a.

The process performs an input and the environment an
output. Notice that messages from the environments
cannot be arbitrary, but must be built via encryption,
decryption, pairing and projection from the messages
recorded ing, plus some fresh names the environment
can create. Thus, a transition might be:

aMm =~
o>P—— a[bh]P.
(vb)Z({)

Here,b is the set of new names the environment has
just created and added to its knowledge, wiilés

an expression describing hoM has been built out
of o andb. This expression uses the variables in the
domain ofa. For example, ifo = [C/x;,K/x,, ... |
andM = {c},, then{ might be{x, }x,, indicating that
messag#/ results from encrypting the —entry using
the x,—entry as a key. Againg must belong to the
knowledge ofo, thusa(z) = a.

. The process performs an internal move and the envi-

ronment does nothing:

T
o>P— o>P.

store known information. We want now to describe how Having introduced the e.s.—Its, we can define a new equiva-
the environment is modified by the actions performed byleénce on top of it. The equivalence should only relate con-
the process and how actions that the process can perforiigurations that exhibit equivalent environments. Informally,
are constrained by the environment. To this purpose, we iniwo environments are equivalent if there is no way of telling
troduce an environment-sensitive labelled transition systenihem apart by performing elementary operations (like pro-

(written e.s.—lts in the sequel), whose statescanafigura-
tions o> P, whereo is the current environment arlis a

jection, decryption, comparison and so on) on their entries.
For instanceg &' [a/x, by, {ali/7 and o’ &' [ayx, by, {bly/7]

process. Transitions between configurations represent inteare equivalent, whiler[Kw] and o’[Kw] are not, becausie

actions betweew andP, and take the form
U
o>-Pr— o' >P
5
whereu is the action of proced® and ¢ is the complemen-
tary environmental actionMore preciselyu can be of three

4

enables decryption of theentry, and then comparing the

obtained cleartext with the first two entries yields different
results. A formalization of these concepts can be found in
[10]; for our purposes, this informal explanation suffices.
The point of view is taken that two equivalent configurations

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

4.2. Sound Reasoning Principles

should exhibit thesame environmental actionao matter P+0=P P+Q=Q+P
what the process actions are. These considerationleadtothe | P+ (Q+R =P+ Q) +R
definition below. We write=- for the reflexive and transitive

. . PlO=P PIQ=Q|P
closure of— (i.e., a sequence of zero or mare- transi- PI(Q|R =(P|Q)|R
. . . u
tions) and, |nduct|vely1,%> for \=>\—>\u:S:> whens=p-s P[IP=!P

5
andu = & - u’. With this notation we have: (vb)0=0
Definition 3(e.s. trace equivalencd)et g, and o, be (Va)(l‘;b)P = (Vb)(‘;a)P act
equivalent environments. Given two procesBemdQ, we (va)P)|Q=(va)(P|Q) ifagin(Q)
write (0y , 0,) b P, Qiff, whenevera; > P = o7 > P, M=M]P=P (v)in=M]P=0 ifM#n
s .

there ares’, 05 andQ’ such thaio,>Q = o,>Q andoj is case {N}, of {y}, inP = PNy

equivalent taoy, and symmetrically foo, > Q.

ir (My,M,) of (x,y) in P=P[My/x, M
This definition highlights a major difference between the pair (My, My) of {x.y) in Mo/ 2y

calculus and the spi-calculus. In thecalculus ‘exact’ cor- Table 2
respondence is required between actions of two equivalent Structural Equivalence
processe® andQ, in the sense that iP is capable of an

a—action, therQ must be capable af too. On the contrary,

the presence of cryptography in the spi-calculus allows foreqivalence; we have included them here because they are
a ‘looser’ correspondence. In fact, encrypting two different a4, in a cryptographic setting. The least equivalence re-
messages with a secret key makes the two messages indiggion over process terms that contains these equations is

tinguishable forda}ny external observer.dl—f|ence, for example yenoted by= and calledstructural equivalence One can
the processeB = (vkjc({a},).0 andQ = (vKk)c({b},).0 easily prove the following rule sound:

are equivalent, even though they do not perform the same P=0
(process) actions.
Trace equivalence avoids quantification over contexts and (0,0)FP=0Q

only requires considering transitions of the e.s.—lts. Thus

- . In our example of Section 4.3. we shall make extensive use
when compared to the contextual definition of may testing, . . '
. . .of two laws derived from structural equivalence. The first
trace equivalence make reasoning on processes much easier.

. ; orie is the so calledxtrusion law
The following theorem ensures that,. is a sound and com-

plete characterization of may-testing equivalenee We (EXTR) k¢ n(Q)
denote byg, the environment that acts as the identity on the
Sotofaar (a,0)F((VKP)|Q=(VKI(P|Q)
It states that, if a restricted narkef P does not occur in a

Theorem 1:Let P and Q be spi-processes, and Mot = processQ running in parallel withP, then the scope of the
fn(P,Q). It holds tha FP~ iff P~ Q. '
PQ) Ce &) e Q Q restriction can be extended so as to incl@le

A similar result holds for barbed equivalence and anThe second law we shall use is actually a pair of laws (that

environment-sensitive version of bisimulation. we shall globally refer to asMATCH)) derivable from the
structural laws for the matching predicgké = N]. In what
4.2. Sound Reasoning Principles follows, we callcontexia proces<| -, ..., - | with n‘holes’

) L that can be filled withh terms, thus yielding a proper pro-
Trace equivalence can be used to justify some rules forCess

syntax—driven reasoning, which are at the core of a sound
and complete proof system for the spi-calculus [11]. The (MATCH)
rules we are going to list are valid for both bisimulation and

trace equivalence. Thus, in what follows, we shall generi- (0,0)F C[P+[M=M]Q]=C[P+Q]
cally write (0, , 0,) - P = Q to mean that the configura- _
tionso; >P ando, > Q are equivalent, without specifying the M is not a name bound b n)Cf - |

actual equivalence.
(g,0)F(vn)C[P+ [n=M]Q]=(vn)C[P]

Structural Laws. Table 2 lists a few fundamental equa-
tions, mostly inherited from thercalculus [24], that are
valid for any ‘reasonable’ process equivalence. Most Ofrangitivity. We shall also widely use the obvious transi-
them have to do with ‘static’ structure of processes. Usu- . .

° i " tivity rule:
ally, the last three equations are not included in structural

JOURNAL OF TELECOMMUNICATIONS 5
AND INFORMATION TECHNOLOGY

(TRANS) figuration, P comes equipped with an environmeat™'
o'[{b}yw], such that neithek nor {-}, appears ino’. Be-

(0,,0,)FP=Q A (0,,03)FQ=R fore P evolves, the only message of the fofnj, thato can
produce is{b},. In other words the only messagecan re-
(0,,0;)FP=R ceive and then properly decrypt usikgs {b},. Thus the

behaviour ofP in o is equivalent tap(x). [x = {b},]Q[LA.

The rule below generalizes this reasoning. We use the nota-
Parallel composition. The spi-representation of a secu- tion 3{_, P, to denote the proce$} +. .. + P, (this notation
rity protocol is usually built up by putting in parallel a few is well-defined since the non—deterministic choice is asso-
simple spi—processes, corresponding to the principals in€iative).
volved in the protocol. A desirable property of each pro- (CasE)
cess calculus is that equivalence proofs can be done
positionally, i.e. by proving equivalences between subpro-

cesses and then combining together such partial results to (o, 0)F (vhi (CliMihe - {Mnk] |

get the wanted claim. Unluckily, observational equivalences _ D[casexof {y}yin Q]) =
on the of spi-calculus are not closed under some operators, (vh.k) (Cl{Mg}io---» {Mn}i] |
notably parallel composition. In particular, a naive law like D3I [x={M},] QMip])
(01,0,)FP=Q N (0, 0)FR=S If k does not occur in context§] -,...,-] and D[- |
andCf[-,...,-] does not bind names M;,Vi=1,...,n

(01,0,)FPI[R=QJS

is not valid. This is due to the interplay between cryptogra-
phy and private names. As we have already shown at the be-

ginning of Subsection 4.1, a private nakean be extruded 4.3. The Kerberos Example
and hence become free, without this implying that learnt

by any observer. As a consequence, we are sometimes co
fronted with equivalences like; o, , 0,) -c({a},).P, =

Specification. For the sake of readability, we will use in
the sequel a few obvious notational shorthands. For example

~ . a((y,2)).P stands fora(x).pair x of (y,z) in P, a({M},).P
c({bl). P, where botha, aqd T2 knowa, b gndc, but nei stands foa(x). casexof {y},in[y=M]P, anda({M,N},).P
ther knowsk. In general, this kind of equations are not pre- . . .

o : - _stands fo(x). casexof {y}, in pairy of (zt) in z=M,t =
served by parallel composition. For instance, when puttmgN P

def _
R= c<k?.0 in parallel to both sides of the previous relation, Tapje 3 gives a high level specification of the protocol us-
the equivalence breaks down. The reason isRmagy pro- jng these abbreviations, while Table 4 gives its translation
vide an observer with the keyto open{a}, and{b}, thus jnts the syntax of Table 1. All bound namesHnare as-
enabling a distinction between these two messages. Similagmed to be distinct from one another and from free names.
problems arise from the output prefix (see [11] for a gen-gypscripts should help reminding the expected value of each
eral discussion about problems arising with composmonalinput variable. For instance, the expected valuexfgyg is

reasoning in the spi-calculus). _ B's certificate, i.e.{T,kyg, A} . NamesA andB play the
Fortunately, a more restrictive formulation does hold. Let YSroles of identifiers for the two principals involved (initiator

?enqteRbgRa the ;?hs ult of rﬁplaqng each nameccurring and responder, respectively)A andreB are shorthands for
ree iNRby o(x). Then we have: the processes that formalize the behaviour of these princi-

(0,,0,)FP=Q pals. . . I .
(PAR) When starting the protocol execution, all the principals im-
(0,.0,)FP|Ro, = Q|Ro. plicitly synchronize on the current time (clock(T)). This
1> 02 1= 2

is an approximation of what happens in practice, as the spi-
calculus does not provide explicit timing constructs to im-
plement secure clock synchronization (a difficult task, which
may require complex interactions). Note the checks the
bp?resence of the timestampin the first received message
and rejects any message hot contairiing

Outputs at channelsommif, andcommig are used to sig-
nal thatinA andreB have completed successfully the pro-
tocol. For readability, we have omitted the messages car-
ried by these two actions, which are irrelevant here. The
case elimination. A common situation for an agent in- lost-output action accounts for the accidental loss of an old
volved in a protocol is waiting for a message and then try-session kek,,, and of the corresponding certificate By

ing to decrypt it using a kek. This is written asP def {Told’kold’A}kBS'

p(x).casexof {y},inP’. Now, suppose that, in some con- Intuitively, everything works well because the long term

if fn(R) € dom(g,) = dom(a,)

The side condition reduces the set of processes that can
composed withP and Q, by requiring that the composed
processes are consistent with the knowledge availahdg to
ando,. In spite of this limitation, the rule allows for non
trivial forms of compositional reasoning, as shown in [11].

6 JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

4.3. The Kerberos Example

inA E' Gg(AB). cas{T % 1B Xoer, Hi) Caaeery {A Makx,) Cap({Ma), _)-COMMIR().0
reB % (T, Al (A Yy,) Gal¥n by,). COmmIg ().0

S T G AB)Cusl{T kag B {T kag Al 1y)0

L E T0sH{To10.kora Ab o Kora)- O

c % ClockT).0

K % (vigksd (L] (vT)(C [((vny)inA)[reB| (vkng)S)))

Table 3
The Kerberos Protocol in spi-calculus

: def ___ . . .
iNA = Crg(A, B).CAS(Xl).caseXlof{X’l}kASm pair X of <XT,XkAB,XB,XcenB) in

[xr =T, Xg = B] Cap(Xcer,: {A nA}XkAB>'CAB(X2)' (X = {nA}XkAB]mO'O
def . . H i i
reB & Cag(y)-pairyof {y;,y,) in caseylof{)/l}kﬁsm pair y; of <yT’ykAB’yA> in
1y = Ty — A casey,of (hhy . in pai ¥, of /¥y i

[Ya = AlCag({¥h, Iy,) COMMIE .0

def . . —
S = cag(2). pair zof (z5,25) in (24 = A Zg = BICag({T.Kag B.ATkag Al b)-0

Table 4
Full details ofinA, reB andSfor the Kerberos Protocol

keysk,s andkgg remain secret. Of course, if an intruder

could forge e.gkgg it would be possible for him to cre- inA, def Cas(AB). Cag({T, Kag: B Xcert, Jie, -
ate a new certificate (with the current timestamp but with a = A AS

.) . : A Xcerty {A Mt)-Cag({Mati,)
non-authentic key) and it would be impossible Bto de- . AB AB

i . commi}().0
tect the event. Note that the system is not specified so as def
to guarantee that a commit will eventually be reached: we ™Baut = Cag({T:Kag: Ahi s {A Y b)-
are only interested in checking that no ‘wrong’ commit will %({ynA}kAB>.commiE<>.0
ever happen. def
PP Kat = (VKagkas kAB)(L

(vT)(C [((vny)inAuy) |reBay|S))

We will prove the desired equality by applying the laws of
Section 4.2. The proof consists of three steps:

Verification. We will consider authentication of the ses- () By (ExTr), (& , §) F K =
sion key:* B andA only accept the ke, ; generated by’ . (VKas Kas Kag: Ma, T)(L|C[inA[S|reB). By
Formally, we want to prove that (CasE) applied tocase x; of ... in inA, then by

structural equivalence (axiom for pair splitting) and
finally by (TRANS), we obtain(g , §)F K=

(&, 8§)F K=K (VKas Kgs Kag: Na, T)(L|CJinA’|S|reB), where
_ _ INA" % Tg(AB). Cug(xy).

where g denotes the enwronmer;';f that acts like [X; = {T,Kkng, B, {T, kAB’A}kBs}kAs]

the identity on the set of names = fn(K7K?ut) = %<{T,kAB,A}kBS,{A,nA}kAB>.

{clock lost, c,g Cge Cag: COMMIf, commif, A, Cas(%o)- % = {Na}] COMMIR().0 .

B, Toia» Koqat and Ky, defined below, formalises the AB

desired protocol’'s behaviouinA,,; andreB,, can commit (by (MATCH), we have deleted the tautolog-

only upon receipt of the expectdd; generated bys; in ical matchings [T = T,B = BJ). We can

fact, note thak,, is obtained fronK’s definition by adding now apply CASE) to case y; of ... in reB

the matchinggx, = kyg] and[y, = kygl in inA andreB and similarly we obtain(g , §)+ K =
H /

respectively, upon reception of their certificates. <thAS7 kes Kag: Ma, T)(LIC|inA'[S|reB,)

where
JOURNAL OF TELECOMMUNICATIONS .

AND INFORMATION TECHNOLOGY

(ii)

(iii)

def
reB, =

Cag(Y)-pairy of (y;,Y,) in (
= {T kg Al T=T.A=A

upon receipt of{Told,kold,A}kBS, reB would perform a fi-

nal commig, which reB,,; cannot do. In essence, remov-
ing the checKy; = T] would recreate the well-known at-

tack against the Needham-Schroeder protocol with symmet-

casey, of {y. in pair Y, of (Ya,¥n) in
20f{ z}kAB 2 of W, ric encryption (see e.g. [13]).

Ya = Al Gagl (Vo J,) - COMITR .0+
V1 =A{Toras kold7A}kBS7Told =TA=A
caseY,of {Y,}, in pairy, of (yj,¥p,) in
[Ya= Al Cag({¥, }x.,)-COMMIE().0)

5. Trace Analysis

We outline here a verification method that departs from the
concept of observational equivalence discussed in the previ-
By (MATCH), we can delete the tautological match- ous section. The method is based on analysing the execution
ings[T = T,A=A] from the first summand and delete traces of a single process representing the protocol. Recall
the second summand (the latter is stuck because of ththat atraceis a sequence of I/0 events (actions) executable

failure of the matching betweeh andT,,,). Hence,
by (TRANS), we have

(& .8)FK= (VK Kgg Kng, Np, T)

(L|C|inA|S|reB) (1)
where
reB &' Cag(y)-pairyof (y;,Y,) in
[yl = {Ta kABa A}kBS}
caéeyzof{y'z}kABln.
pair Y, of <)/A,)/nA> in [Ya=A
Cag({Yh, }i) COMMIE). 0.
Similarly, (8 . §) F Ku =
(VKas Kps Kags Na, T)(L|C[INA'[S[reByy).
Then, applying CASE) to case y; of ...
in reByy, we obtain (g , §)F Ky =
(VKas Kas Kag, M, T)(LIC[INA'|S|reB,,)
where
reB’autd:ef

Cag(Y)-pair Y of (y,Y,) in (
V= {Tkeg Al T=T.A=A

[kag = Kagl casey, of {yz}kAB in

pair Y, of <)/A73/nA> in [ya=A]
Ci({Yh,Jy) COMMIE(.0 -+

V1 =A{To1a: kold7A}kBS’ Taa=T.A=A
[Kora = Kag| casey,of {yz}kold in

pair Y, of (Ya¥h,) in [Ya=A]
Cas({¥h,) COMMIE().0)

by a given spi-calculus process. Roughly, a sensible way
of expressing authentication #ftowardsB, in our version

of Kerberos, is requiring that, in every trace generated by
K, B's final input action is preceded by & output of the
same message, i.B.will only accept messages originating
from A (similarly for authentication in the other direction).
Trace-based formalizations of authentication and secrecy
are generally less demanding than equivalence-based formu-
lations, but more amenable to automatic checking. We will
say more on the relationship between the two approaches in
Section 6.

The interaction of each participant with the the external en-
vironment gives rise to infinitely many traces. A crucial as-
pect of the trace analysis methodsigmbolicexecution [7],
which avoids this form of state-explosion. Symbolic execu-
tion has been implemented as part of a prototype verification
tool named STABymbolic Trace Analyzgrimplemented in

ML [8].

In the rest of the section we will first outline the model un-
derlying trace analysis, then touch upon symbolic execution
and finally re-consider the Kerberos example in the light of
trace analysis.

5.1. Overview of the Model

The model underlying the trace analysis method is very
close in spirit to Dolev-Yao's one [16]. Informally, agents
executing the protocol communicate through a network of
public channels that are under the control of an adversary,
therefore there are no private channels. Sending a mes-
sage just means handing the message to the adversary. Con-
versely, receiving a message just means accepting any mes-
sage among those the adversary can produce. The adver-

Again by (MATCH), we can delete the tautological sary records all messages that transit over the network, and
match|ngs from the first summand and delete the SeCtan produce a message by either rep'aying an old one, or

ond one, obtaining

(&§,8)FKae= (VkAs> Kgs Kagy Na T)
(L|CJinA’|S|reB)) (2)

by combining old messages (e.g. by pairing, encryption and
decryption) and/or by generating fresh quantities.
Formally, a state of the system is a pair P, calledcon-

The right hand sides of (1) and (2) are the same.figuration sis a trace of past I/O events (actions), and rep-

Hence by TRANS), we obtain the desireds, , ¢)+
K = Kaut-

Finally, notice that without the matching; = T] in reB's
definition, the equivalence would be broken. In particular, tween two configurations. In Table 5 we report the rules

resents the current adversary’s knowledgés a spi-term,
describing the intended behavior of honest participants. The
dynamics of configurations is given by a transition relation
— that describes elementary steps of computations be-

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

5.2. Symbolic Execution

defining the transition relation, for a subset of the language (INP) s>a(x).P — s-a(M)>PM/
introduced in Section 2. In particular, since we are looking
for an automatic method, we have omitted replication, which if sk M andM is closed

would make the problem undecidable (see e.g. [17]). Rules
(INP) and(OuT) concern sending and receiving messages,
respectively. Since sending a message just means handing (OuT)
the message to the adversary, any output aci{df) fired

by a process is recorded in the adversary’s current knowl-
edges (rule (OuT)). Conversely, receiving a message just

s>a(M).P — s-a(M)>P
(CASE) s»case{M},of {y} inP — s>P[Mp]

(SPLIT) s>pair (M,N) of (X,y) in P —

means accepting any message among those the adversary — s> P[Myx, Ny
can produce. Therefore, in ruiénp) the variablex can be

replaced by any messad@ non—deterministically chosen (MATCH) s>[M =M]P — s>P
among those the adversary can synthesize from its current

knowledges. The synthesis of a messalyefrom a set of (RES) s> (va)P — s[@/a]>P[@/a]
known messageSis formalized by a deduction relatidn.

Here is a sample of deduction rules definindsee [7]): if ' is fresh fors

MeS SFM Sk k SHF{M Sk k
M} s>P — P

SFM Sk {M}, SHM (PAR)
s>P|Q — s>P|Q

The other operational rules in Table 5 govern how a
process decrypts a messagaséMof {y},inP), splits a plussymmetric version ofRAR).
pair (pair (M,N) of (x,y) in P), compares two messages for
equality (M = N]P), handles a new namé¢ya)P) and in-
terleaves execution of parallel threaéq Q).

It is worthwhile to point out that, like in [28, 19, 6], there is
no need for an explicit description of the adversary’s behav-
ior, as the latter is wholly determined by its current knowl- action, respectively, then the property might be expressed by
edge — thesin s> P — and by the deduction relation. This final, ({x},) < finalg({x},), for x a variable. The scheme

is somehow in contrast with other proposals [22, 27], wherealso permits expressing secrecy as a reachability property
the adversary must be explicitly described. (in the style of [5, 19]): this will be further discussed in Sec-
Given a configuratios> P and a traces, we say thasr P tion 6.

generates if s>P —* §>P for someP’ (—* is the re-
flexive and transitive closure of—, i.e. zero or more steps
of —). We express properties of the protocol in terms of

the traces it generates. Ir! particular, we focus on corresponypen synthesizing new messages, the adversary can apply
dence assertions of the kind operations like pairing, encryption and generation of fresh
names, an arbitrary number of times. Thus the set of mes-
sages the adversary can synthesize at any time is actually in-
finite. Any such message can be non-deterministically cho-
sen by the adversary and sent to a participant willing to re-
that is concisely written ag < 3. More accurately, we ceive it; therefore every model based on Dolev and Yao's
allow a and 3 to contain free variables, that may be in- is in principle infinite. Our model makes no exception: in
stantiated to ground values. Thas«— B actually means rule (INP) the set oM s.t. s - M is always infinite, and this
that every instanceof B must be preceded by the corre- makes the model infinitely-branching. This can be regarded
sponding instance af, for every generated trace. We write as a state explosion problem induced by message exchange.
s>P = a « 3 if the configurations> P satisfies this re- To overcome this problem, the STA tool implements a veri-
guirement. This kind of assertions is flexible enough to ex-fication method based on a notion of symbolic execution. A
press interesting secrecy and authentication properties. Asew transition relation (writter— below) is introduced in

an example, the final step of many key-establishment pro-order to condense the infinitely many transitions that arise
tocols consists i\'s sending a message of the fofiN}, from an input action (rulelP) in Table 5) into a single,

to B, whereN is some authentication information, akthe symbolictransition. The received message is now repre-
newly established key. A typical property one wants to ver-sented simply by a free variable, whose set of possible val-
ify is that any message encrypted wklthat is accepted by ues is constrained as the execution proceeds. Technically,
B at the final step should actually originate fréx{this en- a constraint takes the form ofiost general unifie(mgu),
suresB he is really talking t&\, and thak is authentic). Ifwe i.e., the most general substitution that makes two expres-
call final, andfinalg the labels attached #'s andB's final sions equal. The set of traces generated using the symbolic

Table 5
Transition relation on Configurations-()

5.2. Symbolic Execution

for every generated trace, if actighoccurs in
the trace, then actioo must have occurred at
some previous point in the trace

JOURNAL OF TELECOMMUNICATIONS 9
AND INFORMATION TECHNOLOGY

transition relation constitutes tisymbolic modedf the pro- Since all channels are public and controlled by the environ-
tocol. Differently from the standard model given by, ment, we have made all channel names distinct and used
the symbolic model is finite, because each input action justhem just as references for process actions. Also, we need
gives rise to one symbolic transition and agents cannot loopnot make commit actions explicit now, thus we have dropped
For a flavor of how symbolic execution works, let us con- them. Conf is the initial configuration of the protocol,
sider an example focusing on shared-key encryption. Supeomposed by an empty list of actions andKywhile Au-

pose that agerR, after receiving a message, tries decrypting thKey , AuthAtoB andAuthBtoA represent the proper-
this message using kdyif this succeeds anglis the result, ties we want to check of this configuratiohuthKey states

the agent checks whethgequalsb and, if so, proceeds like that any message acceptedbgta2 should originate from

P.. This is written asP dzefa(X).CElseXOf {Y}inly=b]P, S this implies the adversary cannot fobiinto accepting a
for y fresh. Let us explain how the symbolic execution Key different fromkAB. PropertyAuthAtoB states that any
proceeds, starting from the initial configuration P. Af- ~ Message accepted Byatbl should originate fronA ata3.

ter the first input step, in the second step the decryptiorAUthBtOA can be explained similarly. The three properties
casexof {y}, in --- is resolved by unifying and{y},, which together guarantee thaendB always talk to each other and
results in the substitutiofy}/x. In the third step, the that they agree on the exchanged data (in particular, on the

equality testly = b] is in turn resolved by unifying and €Stablished key), which are authentic. o
b, that results ifb/]. Formally, If we ask STA to check any of the three properties listed

above, we get this answer:
e>P —_ a(x)>casexof {y},in[y = b

— al{yh)ely=bP[IYhe > val it = "No attack was
N a<{b}k>>P’[{y}k/x][b/y]. found, 61 symbollc COI’]fIgU-
s rations reached." : string

An important point is that symbolic execution actually ig-
nores the deduction relation and thus may give rise to Which means that STA has explored the whole symbolic
“inconsistent” symbolic traces. These inconsistencies cartate-space of the protocol, consisting of 61 configurations,
be detected and discarded via a refinement procedure, davithout finding any trace violating the property (this explo-
scribed in [7]. ration takes STA a fraction of a second). Thus there are no
The verification method based on symbolic execution isattacks on this configuration of the protocol.

proven sound and complete w.rt. the standard model, irSuppose now we modiff so that it omits the check on the
the sense that every consistent attack detected in the syniteshness ot , i.e. we re-define

bolic model (relatlon—>s) correspond; to some attack in val reB = b1?({tykAB,A }kBS, {AynA }kAB)

the standard model (relatior—), and vice-versa. In other >> b2l {ynA}ykAB >> stop;

words, the symbolic model captures all and only the at- | ’

tacks of the standard model. For instance, the method dewhere we have replaced the timestafipy an aritrary vari-
tects type-dependent attacks, which usually escape finiteablet in b1. STA finds an attack on the properyuthA-

state analysis, e.g. [23]. In this kind of attacks, the adveroB . The attack is reported under the form of a trace violat-
sary cheats on the type of some messages, e.g. by insertingg the property:

a nonce where a key is expected according to the protocol
description. > val it = "An attack was found:

lost!(kOld, {TOId,kOId,A }kBS).
clock!T. all(A,B).

5.3. The Kerberos Example b1?({TOId,kOld,A }kBS, {A,ynA }KOId)
We illustrate the trace analysis method and the use of the 4 Symbolic configurations
reached." : string

automatic tool STA on the simplified Kerberos protocol of

Section 3. The tool_follows the_ syntgx and semantics ofq attack is based on the adversary’s replaying the old,
the formal model, with a few minor differences. E.g., aC- compromised keykOld and the corresponding certificate
tion prefixing is written>>, parallel composition is written {TOId,kOld, A 1kBS acquired thanks to tHest action.

|| . restriction is writtemew-in , while 0is Writtenstop . Note that the trace contains a free variaé: it can take
Output actions are written @M, while input actions are o an value which is known to the attacker.

written asa?M. The latterMcan be a generic message pat-

tern: this means receiving any adversary-generated message

whose form matchel! To this purpose, we distinguish ex- 6. A Comparison

plicitly between names and variables (the latters, by conven-

tion, start byx, y, ...). Finally, we denote by-- the cor- The reason for considering two models — the equivalence-
respondence predicate’, and bys @ Pthe configuration based one and the trace-based one — of the same language
s> P, wheres is represented as a list of actions . is mostly pragmatic. A major advantage of observational
Table 6 contains the complete STA script defining one sesequivalences is a host of syntax-driven reasoning rules, that
sion of Kerberos, and the desired authentication propertiesn some specific cases may be adequate for reasoning “with

10 JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

5.3. The Kerberos Example

val inA = nA new-in (all(A,B) >> a2? {T.xkAB,B,xCertB }kAS >>
a3!(xCertB, {A,nA }xkAB) >> a4? {nA}xkAB >> stop);

val S = KkAB new-in (s1?(A,B) >> s2! {T,KAB,B, {T,kAB,A }kBS}KAS >> stop);

val reB = bl1?({T,ykAB,A }kBS, {A,ynA }ykAB) >> b2! {ynA}ykAB >> stop;

val K = KkAS new-in kBS new-in (lost!(kOld, {TOId,kOIld,A }kBS)>>stop ||
T new-in (clock!T >> stop || inA || reB || S));

val Conf = ([0 @ K);

val AuthKey = (s2lt <-- a2?t);

val AuthAtoB = (a3lu <-- bl?u);

val AuthBtoA = (b2'w <-- ad4?w);

Table 6

Encoding Kerberos protocol in STA

paper and pencil” on infinitary processes (i.e. processes /. Concluding Remarks and Related
that use replication) as well. At present, we lack theory

: _ _ . Work
and automatic tools for checking equivalences between spi-
processes. On the other hand, the trace-based approach
automatic, but limited to finite (i.e. replication-free) pro-
cesses.

We have outlined some recent approaches to the analysis of
security protocols, centered around concepts derived from

_ _ the field of process calculi, such as observational semantics
An important problem left open by current research is that ofang symbolic transition systems.

establishing a formal relationship between the two modeIsEaﬂy work on reasoning methods for the spi-calculus was
and the notions of authentication and secrecy conveyed b)bresented in [4], wherzamed bisimulatiowas introduced
them. Below, we try a first comparison. We shall confine 55 g proof technique, though incomplete, for reasoning on
our discussion to secrecy, but we feel that similar argumentgontextual equivalences. The environment sensitive transi-
apply to the case of authentication. tion system presented here was introduced in [10], and based
The equivalence-based formalization is seemingly more deen that, the complete characterizations of contextual seman-
manding than the trace-based one. In fact, the former taketics discussed in Section 4. were obtained. Some of the rea-
into account the overall behaviour of the protocol, while the soning principles used in this paper were introduced there.
latter takes into account only correspondence between singl@ sound and complete proof system for finite processes is
actions, or exposure of secret data items. In fact, we are onlgliscussed in [11].

able to prove here that T-secrecy does not imply E-secrecyConcerning trace analysis, [7] develops the theory underly-
First of all, let us state more precisely the two notions of ing the verification tool STA, while [8] presents verification
secrecy we are interested in. examples and compares the results to those obtained using
finite-state methods. Initial work on symbolic analysis is
due to Huima [20]. Symbolic techniques are also exploited

Definition 4(two notions of secrecyl.et P(x) be a spi- in [5, 14, 30], but the algorithms they use are quite different

calculus process. We say that:

from ours.
A few very recent work conjugates the spi-calculus with al-
¢ P(x) keepsx E-secretf for every x': P(x) ~ P(X); ternative formal approaches to security. Examples of these

techniques include the type systems for secrecy in [1] and
the one for authentication in [18], and the work on logic
programs in [2].
Finite-state model checking has proven very effective in
practice to find bugs in security protocols, e.g. [22, 23, 27].
When compared to these more traditional methods, major
benefits of the equivalence-based approach seem to be a host
inspection), but not E-secret. In fact, consider the ob—mc syntax-o_lrive_n reasoning_principles and a_fully_ satisfac-
def © tory formalization of many important properties, including
serverQ :wa<x>.b(z).w.0: we haveP(x) |O ==, butnot implicit information flow (that may arise due, e.g., to traffic
P(X)[O =, henceP(x) # P(X) for X' # x. This shows apalysis). On the other hand, the equivalence-based method
that E-secrecy is not implied by T-secrecy. lacks at present automatic verification techniques. Sym-
On the contrary, we conjecture that E-secrecy does imply Tholic trace analysis appears to be closer in spirit to model
secrecy. Intuitively, it should be possible to uniformly trans- checking, but does not suffer from the state-explosion prob-
form a traces generated by a configuration sstt- xinto an lems of model checking, which requires considering approx-
observer that detects the disclosurexofWe leave the proof imate models, even when the number of protocol sessions
of this conjecture for future work. is bounded. Analysis of real-life case-studies could tell

e P(x) keeps T-secreif there is no configuratios > P’
s.t.erP(x) —* §>P ands + x.

ef

Now, consider the processP(x) te (vk)(aly).ly =
x|b({x},).0. The processP(x) keepsx T-secret (by

JOURNAL OF TELECOMMUNICATIONS

AND INFORMATION TECHNOLOGY 11

whether the approaches derived from the spi-calculus may[23] G. Lowe. A Hierarchy of Authentication Specifications.Rroc. of
represent a valid alternative to the established techniques.

Acknowledgments:
a careful reading of the manuscript and for suggestions that

We are very grateful to the editor for

helped us to improve the paper.

(1]
(2]
(3]
4
(5]

(6]

(7]
(8]

El

(20]

(11]

(12]

(13]

(14]

(15]
(16]

(17]

(18]

(19]

(20]

(21]

[22]

12

References

M. Abadi. Secrecy by Typing in Security Protocolurnal of the
ACM, 46(5):749-786, Sept.1999.

M. Abadi, B.Blanchet. Analyzing Security Protocols with Secrecy
Types and Logic ProgramBOPL’'02, ACM Press, 2002.

M. Abadi, A.D. Gordon. A Calculus for Cryptographic Protocols:
the spi-calculusinformation and Computatiqri48(1):1-70, 1999.

M. Abadi, A.D. Gordon. A Bisimulation Method for Cryptographic
ProtocolsNordic Journal of Computings(4):267-303, 1998.

R.M. Amadio, S. Lugiez. On the Reachability Problem in Crypto-
graphic Protocols. IfProc. of Concur'0Q LNCS 1877, Springer,
2000. Full version: RR 3915, INRIA Sophia Antipolis.

D. Bolignano. Towards a Mechanization of Cryptographic Protocol
Verification. International Conference on Computer Aided Verifica-
tion, LNCS, Springer, 1997.

M. Boreale. Symbolic Trace Analysis of Cryptographic Protocols.
ICALP’01, LNCS 2076, pp.667-681, Springer-Verlag, 2001.

M. Boreale, M.G. Buscemi. Experimenting with STA, a Tool for Au-
tomatic Analysis of Security Protocol&CM Symposium on Applied
Computing 2002ACM Press, 2002.

M. Boreale, R. De Nicola. Testing Equivalence for Mobile Pro-
cesseslnformation and Computatiqri20: 279-303, 1995.

M. Boreale, R. De Nicola, R. Pugliese. Proof Techniques for Crypto-
graphic ProcessekICS’99, ProceedingdEEE Computer Society
Press, pp.157-166, 1999. Full version to appe&li&M Journal on
Computing

M. Boreale, D. Gorla. On Compositional Reasoning in the Spi-
Calculus.FoSSaCS’02, ProceedindM. Nielsen, H.U. Engberg,
Eds.),LNCS 2303, pp. 67-81, Springer-Verlag, 2002.

J. BorgStom, U. Nestmann. On Bisimulations for the Spi-Calculus.
Manuscript, available from http:/lampwww.epfl.ehiwe/doc/spil/,
2002.

M. Burrows, M. Abadi, R. Needham. A Logic of Authentication.
ACM Transactions on Computer Syste(d):18-36, 1990.

H. Comon, V. Cortier, J. Mitchell. Tree Automata with One Memory,
Set Constraints and Ping-pong Protocd@ALP’01, LNCS 2076,
pp.682-693, Springer-Verlag, 2001.

R. De Nicola, M.C.B. Hennessy. Testing Equivalence for Processes.

Theoretical Computers Scien@:83-133, 1984.

D. Dolev, A. Yao. On the Security of Public-key ProtocdEEE
Transactions on Information Theqr(29):198-208, 1983.

N. Durgin, P. Lincoln, J. Mitchell, A. Scedrov. Undecidability of
Bounded Security Protocols. Rroc. of FLOC Workshop on Formal
Methods and Security Protocolrento, 1999.

A.D. Gordon, A. Jeffrey. Authenticity by Typing for Security Pro-
tocols.14th IEEE Computer Security Foundations Workshaages
145-159, 2001.

J. Goubault-Larrecq. A Method for Automatic Cryptographic Pro-
tocol Verification.Proc. 15th IPDPS WorkshopsNCS1800, pages
977-984, Springer 2000.

A. Huima. Efficient Infinite-State Analysis of Security Protocols. In
Proc. of FLOC Workshop on Formal Methods and Security Proto-
cols Trento, 1999.

J. Kohl, B. Neuman. The Kerberos Network Authentication Service
(version 5). Internet Request For Comment RFC-1510, 1993.

G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key
Protocol Using FDRTACAS’'96 ProceedinggT. Margaria, B. Stef-
fen, Eds.)LNCS 1055, pp. 147-166, Springer-Verlag, 1996.

(24]

(25]

(26]

(27]

(28]
(29]

(30]

10th IEEE Computer Security Foundations WorkshH&tE Com-
puter Society Press, 1997.

R. Milner. The Polyadigr-calculus: a Tutorial. Ih.ogic and Algebra

of Specificatior(F.L. Hamer, W. Brauer, H. Schwichtenberg, Eds.),
Springer-Verlag, 1993.

R. Milner, J. Parrow, D. Walker. A Calculus of Mobile Processes,
(Part I and Il).Information and Computatiqri00:1-77, 1992.

R. Milner, D. Sangiorgi. Barbed BisimulatiofCALP’92, Proceed-
ings (W. Kuich, Ed.), LNCS 623, pp.685-695, Springer-Verlag,
1992.

J.C. Mitchell, M. Mitchell, U. Stern. Automated Analysis of Cryp-
tographic Protocols Using Mg In Proc. of Symp. Security and
Privacy, IEEE Computer Society Press, 1997.

L.C. Paulson. The Inductive Approach to Verifying Cryptographic
ProtocolsJournal of Computer Securit$:85-128, 1998.

D. Pointcheval. Asymmetric Cryptography and Practical Security.
This volume.

M. Rusinowitch, M Turuani. Protocol Insecurity with Finite Num-
ber of Sessions in NP-Complete. 1dth Computer Security Foun-
dations WorkshopdEEE Computer Society Press, 2001.

JOURNAL OF TELECOMMUNICATIONS
AND INFORMATION TECHNOLOGY

