17th Computer Security Foundations Workshop (CSFW’04), pagg. 48 - 60.

IEEE Computer Society, 2004.

A Distributed Calculus for Role-Based Access Control

Chiara Braghin
Dip. di Informatica

Univ. Ca’ Foscari di Venezia

Abstract

Réle-based access control (RBAC) is increasingly at-
tracting attention because it reduces the complexity and
cost of security administration by interposing the notion of
role in the assignment of permissions to users. In this paper,
we present a formal framework relying on an extension of
the m calculus to study the behavior of concurrent systems
in a RBAC scenario. We define a type system ensuring that
the specified policy is respected during computations, and a
bisimulation to equate systems. The theory is then applied
to three meaningful examples, namely finding the ‘minimal’
policy to run a given system, refining a system to be run
under a given policy (whenever possible), and minimizing
the number of users in a given system without changing the
overall behavior.

Introduction

Rodle-based access control (RBAC) [6, 17] has recently
emerged as a widely accepted alternative to classical dis-
cretionary and mandatory access controls: a standard is cur-
rently under development by the National Institute of Stan-
dards and Technology (NIST) [7] and several commercial
applications directly support some forms of RBAC, e.g.,
Oracle, Informix and Sybase in the field of commercial
database management systems.

RBAC is a flexible and policy-neutral access control
technology: it regulates the access of users to information
and system resources on the basis of activities they need
to execute in the system. The essence of RBAC lies with
the notions of user, réle and permission: users are autho-
rized to use the permissions assigned to the roles they be-
long to. More specifically, RBAC allows for a preliminary
assignment of permissions to rdles (thus abstracting from
which users will play the various roles at run-time). A user
may then establish multiple sessions, e.g., by signing on to
the system, during which he activates a subset of roles that
he is a member of. This greatly simplifies system manage-
ment, as it reduces the cost of administering access control
policies, as well as making the administration process less

Daniele Gorla

Dip. Sistemi e Informatica, Univ. di Firenze

Vladimiro Sassone

University of Sussex

Dip. Informatica, Univ. di Roma ‘La Sapienza’

error-prone. Anyway, the complexity of the models (e.g., in
large systems the number of roles can exceed hundreds or
thousands) demands a structured approach to the analysis
and design of such systems.

This paper aims at developing a foundational theory for
system behaviors in a RBAC scenario; to the best of our
knowledge this is the first attempt in this direction. Our ref-
erence model is the so-called RBAC96 model, introduced
by Sandhu et al. in the seminal paper [17]. More advanced
RBAC models include rdle hierarchies and constraints such
as réle mutual exclusion, separation of duty, delegation of
authority and negative permissions. Our starting point is
the 7 calculus [18], which provides very well-established
mathematical tools for expressing concurrent and possibly
distributed systems. Essentially, our idea is to equip the 7
calculus with a notion of users (i.e., named processes), with
two new constructs for activation/deactivation of roles, and
with a way to grant permissions to rdles. This is accounted
for by associating each process with a name representing a
user and with a set p recording the rdles activated by the
user during the current session. Hence, the term r{ P |}, rep-
resents a session of the user named r, running a process P
with active rdles p. The calculus is completed by two con-
structs to model role’s activation/deactivation, defined by
the following reductions:

riroleR.P}, — r{Phunr
rlyieldR.P}, — r{Pl, g

Intuitively, when a user r activates a role R during a ses-
sion, R must be added to the set of activated roles p, and the
remaining of the session P will be executed with the set p
updated. Vice versa for the deactivation of R.

As an example, the following system

client{role auth_client.port_80(index.html).P |},
|| server{ port 80(x).Q }

models the interaction between a client and a HTTP server.
The system contains two users, client and server, running in
parallel. It may evolve as follows. First, user client activates
the role auth_client by exercising the role action, which
in practice would involve to authenticate herself by means
of a secure certificate. Then, she sends the request to the

HTTP server to the usual port 80, i.e., performs an output
action on the channel port_80.

The introduction of named users immediately suggests
the idea of a distributed system. In such systems, as e.g.
the Internet, the notion of global, non-located channels as
port.80 is quite an abstraction over what is realistically
achievable. We therefore use a notion of localized channels
a la Dr [10], where each channel is associated to a single
user. Syntactically, we realize this feature by tagging output
actions to specify the user (or location) where the exchange
is supposed to take place. Thus the example above may be
rewritten as:

client{ role auth_client.port_80°""*(index.html).P |},
|| server{ port 80(x).Q i

We also allow user names to be exchanged during com-
munications. This feature adds flexibility and realism to
the language, since in distributed systems users have only
a partial and evolving knowledge of their execution envi-
ronment. For example, the client above can be generalized
to leave the server identity unspecified and to dynamically
retrieve it with an input from channel choose_a_server:

client{role auth_client.choose_a_server(x)
port 80 (index.html).P |},

More details on our calculus, together with some illustrative
examples, will be given in Section 1.

The mapping among users, rdles and permissions, which
controls the access of subjects to objects, is achieved by a
pair of relations (U ; P), called RBAC schema. In (U ;P),
relation U is the association users-to-roles, while P is the
association permissions-to-réles. As a first contribution of
this paper, we define in Section 2 a type system which
complements the dynamics of the calculus by providing
static guarantees that systems not respecting a given RBAC
schema are rejected. In the client/server example above,
a client not authenticated (i.e. interacting with the server
without having previously performed a role auth_client)
would be rejected, if the RBAC schema enables only autho-
rized users to perform HTTP requests.

Often, the overall structure of a distributed system can-
not be known statically. Thus, a typing approach may not be
usable in practice. What is needed is a technique to study
system components in isolation, compositionally, and un-
der different schemata. Hence, as a second contribution, in
Section 3 we introduce a labeled transition system to give a
structured operational semantics to programs, and account
for the dynamic checks necessary to enforce RBAC poli-
cies. Such labeled transition system yields a bisimulation
equivalence, adequate with respect to a standardly defined
(typed) barbed congruence, that allows us to prove some
interesting algebraic laws. As an example, we show how
RBAC schemata may change the semantic theory of the &

CHANNELS: a”",b*,...€e C=N.x N,
IDENTIFIERS: u,V,... E Ny,UVUCU N, XV)
VALUES: m,n,...€ N,UC
Processes: P, Q ::= nil | P|Q | P | [u=v]P

| (va:RP | ax).P | uw).P
| roleR.P| yield R.P

SysteEms: A,B ::

0| AP, | AIB| (va:RA

Table 1. Syntax of the Calculus

calculus. Consider the following system, adapted from the
client/server example above:

(v port 80" R)(server{ port 80(x).Q |}
|| client{ port_80°""*'{index.html).P |}y)

where (v port_80°°"*" : R) is the standard restriction operator
of a typed x calculus (it declares porr_80°*™" at type R and
limits the visibility of the channel to client and server only).
By resuming the assumption that only authorized users can
perform HTTP requests, the above system is blocked, i.e. it
is equivalent to the empty system 0, because the client has
not been authenticated. On the contrary, in the & calculus a
similar term would have been equivalent to the term result-
ing from the client/server exchange.

In Section 4 we use types and bisimulations to deal with
three meaningful examples: finding the ‘minimal” RBAC
schema to execute a system, refining a system to be well-
typed with respect to a given schema (whenever possible),
and minimizing the number of users in a given system with-
out changing the overall behaviour. We conclude by com-
paring our approach with related work in Section 5. In this
extended abstract all proofs are omitted, as is much of the
discussion; complete proofs can be found in [3].

1 The Language

In this section we introduce our calculus formally. First,
we define syntax and operational semantics; then, we for-
malize the RBAC schema to describe the roles-to-users and
permissions-to-roles assignment.

1.1 Syntax

The calculus is a conservative extension of the 7 calcu-
lus. We assume the following countable and pairwise dis-
joint sets: R of réle names, ranged over by R, S, ...; N, of
user names, ranged over by 7, s, ...; N, of channel names,
ranged over by a,b,...; and V of variables, ranged over
by x,y,z. The syntax of the calculus is given in Table 1,

with restricted channels decorated with a role as described
in Section 1.3.

A system consists of the parallel composition of user ses-
sions that can share channels. A user session r{ P}, rep-
resents a user named r executing session P with the set p
recording r’s active roles. Observe that different sessions of
the same user can run in parallel within a system A: this is
the usual notion of sessions in RBAC models.

Processes nil, P | Q, !P, [u = v]P, (va : R)P, a(x).P,
u(v).P are the ordinary n-like constructs representing re-
spectively the inactive process, parallel composition of pro-
cesses, replication (to model recursive process behaviors),
value matching, restriction of channel names and standard
input/output actions over channels. (As usual, in the rest of
the paper we will omit trailing inactive processes.) The nov-
elty of the calculus resides in the actions role R and yield R,
and in the locality of channels, as already described in the
Introduction. Actions role R and yield R implement activa-
tions/deactivations of roles in the user session they belong
to, and modify the session rdles accordingly.

Channels are uniquely associated to users. The set of
channels C is formed by coupling a channel name with a
user name, and it is ranged over by a’, b, Identifiers,
ranged over by u, v, .. ., denote user names, variables, chan-
nels and compound entities made up by a channel name and
a variable. The only transmissible values are user names
and channels and are ranged over by m,n,.... Channel
names cannot be transmitted, as they make little sense with-
out the indication of the user owning them. Input channels
cannot be variables and are not decorated with a user name.
This is a syntactic means to localize them, as input chan-
nels implicitly belong to the user the appear in. On the other
hand, output actions must indicate the name of the user con-
taining the invoked channel. For example, r{a’(...).P|,
models a user r trying to communicate along channel a as-
sociated to user s (if any). Notice also that a process like
a(x).b*(v).P can be accepted but, in order to be executed, at
run-time x must be assigned a user name r which owns an
input channel b". These properties will be enforced by the
type system of Section 2.

Restrictions (va : R)P and (va” : R)A and the input pre-
fix a(x).P act as binders for channel name a, channel " and
variable x, respectively. The sets of free and bound channels
in a system A, written Fc(A) and Bc(A), are defined accord-
ingly, and so is alpha-conversion. Just notice that (va: R)P
within user r binds channel a". The formal definition of
free and bound channels is in the full paper [3]; here we
assume that systems are closed (i.e. with no free variables),
that bound channels are pairwise distinct and different from
the free ones. Furthermore, observe that user names cannot
be restricted. This seems reasonable since the creation of a
new user is a sensitive operation: it has to be performed by
the system administrator, as it may affect the RBAC policy

underlying the entire system.

In this paper, we denote with ~ a possibly empty tuple
of entities of kind _. Moreover, we write @’ : R to denote
the tuple {af : Ry,. ..,a,ﬁ : Ry}, for k > 0. Sometimes, we
shall use tuples as sets (i.e. without considering the order of
their elements) and we write, e.g., b* € aorb*:Sea :R.

1.2 Dynamic Semantics

The dynamics of the calculus is given in the form of a
reduction relation. As customary, the reduction semantics is
based on an auxiliary relation called structural congruence,
=, which brings the participants of a potential interaction to
contiguous positions.

Definition 1.1 (Structural Congruence). The structural
congruence relation, =, is the least congruence on systems
which equates alpha-convertible systems, makes || and |
commutative and associative with identities respectively 0
and nil, and satisfies the following laws.

HPlQb,
r{(va:R)P},
(va":R)(vb*:S)HA

Pk Il 0L,
(va":R)r{ P},
vb3:S)(va":R)A

(va":R)A || B = (va":R)A | B) if a” ¢ Fc(B)
r'Pl, = r{P|'P],
rllu=ulPl, = r{Pl,

Definition 1.2 (Reduction Relation). The reduction rela-
tion, —, is the least relation on systems satisfying the fol-
lowing laws.

rla(x).Pl, || s{a"(n).Qby — r{ P[Wx] b, | s{ Qb
r{roleR.Pll, — r{ P ,unr)
r{yieldR.P}, — r{ P}, g

A — A
(va":R)A — (va":R)A’

Ar— A
A|lB— A ||B

A=A A+ B B =8B

A +— B

All structural rules are standard, but the first two. The
first states that a session of user r with roles p hosting two
processes running in parallel can be split in two parallel
sessions of r with roles p. The second one states that a
restriction of a channel name inside a user can be turned
into a restriction over the corresponding channel at the sys-
tem level. Similarly, the reduction relation is an extension
of [18] with the rules for actions role R and yield R. The

first action adds R to the rOles p activated in the current
session, while the second one removes R from p. Notice
that, by exploiting the first structural rule and the rules for
role/yield, the user r{roleR.P | yieldS.Q|, evolves into
r{ Plyury Il 7] Q -5y, 1.€. actions role/yield only affect the
process thread executing them.

1.3 RBAC Schema

To conclude the presentation of the RBAC96 model, we
need to define the RBAC schema, i.c., the roles-to-users
and permissions-to-rdles associations, where permissions
enable the actions a user can perform within a system.

Managing roles and their interrelationships is a difficult
and sensitive task that is often centralized and delegated to a
small team of security administrators. In our framework, the
RBAC schema consists of a pair of finite relations (U ; P),
where U assigns roles to users, while # assigns permissions
to roles. More formally,

U Cin NUCO X R P Cin RX A

where A £ (RT, R, R'}rer represents the set of performable
actions. Intuitively, permission RT determines the possibil-
ity to activate role R (via the action role), while permissions
R’ and R' determine the possibility of performing input and
output actions over a channel of role R, respectively. Notice
that permissions over input/output actions are not defined
in terms of channels, but of channel rdles. In this way, we
are flexible enough to model both the permission to com-
municate over a single channel (when the relation U maps
only one channel to a role), and the permission to commu-
nicate over the member of a group of channels (when re-
lation U maps more than one channel to the same rdle).
Such a case may be useful in situations where more chan-
nels can handle the same kind of requests (cf. Example 1
for a possible situation). Observe that, if U assigns role R
to a channel, then the permissions assigned to R by P are
irrelevant; that is, matters only for users. Moreover, since
channels can be considered as methods provided by users,
it seems reasonable that each channel is assigned only one
role. A RBAC schema satisfying this last requirement is
called well-defined; in the following we shall only consider
well-defined RBAC schemata. Observe that in A no per-
mission represents actions yield. Indeed, we assume that a
role can be deactivated if (and only if) it has been activated
before.

To conclude the presentation of our language, we now
give a couple of examples using the features introduced so
far. We use the following notational conventions. We use _
as a generic placeholder, and write U(_) to denote the set of
all roles R such that (_,R) € U; we call the left projection
of U its domain, and proceed analogously for . Finally,
we let P(o) mean | Jge, P(R).

Example 1. Let us now formalize in our framework a sce-
nario where a bank client is waiting to be served by one of
the branch cashiers available. There are two users, r and
s, representing respectively the client and the bank branch,
while cashiers are modeled as channels belonging to user
s, named cy,...,c,. The roles available are client and
cashier. Relation U assigns role client to user r and
cashier to channels ¢;, while # assigns to client the
permission to communicate with any of the cashiers, i.e.,
(client, cashier') € P. In this way, r can indistinctly
activate any of the cashier methods. The overall system can
be described as follows (where we use IT as a shorthand for
parallel composition):

r{role client.enqueue’{r).dequeue(z).
Z(reqy).- - .z(req;).z(stop).yieldclient [}, ||
s{ (vfree : scheduling)(
lenqueue(x).free(y).dequeue*(y) | I free*(c}) |
T, lei(x).(
[x = withdrw_req]{handle withdraw request) |
[x = dep_reg](handle deposit request) | ... |
Lx = stopl free*(c}) Dy

Once the client enters the bank (i.e., she activates role
client), she queues up and waits to be served. When one
of the cashiers becomes available (information maintained
internally by the bank via the reserved channel free used for
cashiers’ scheduling), the client is notified and can make
requests along the received channel z. Cashiers repeatedly
receive requests; we assume methods to handle money with-
draw and deposit (for simplicity, we do not consider the or-
der in which clients arrive; a system of queues can however
be added routinely).

Example 2 (Prerequisite role). In some circumstances,
one may want to require a rdle to be activated only
by a user already playing a certain role. This is a
particular model of constrained RBAC called prerequi-
site role (see, e.g., [17]). In the banking scenario
of Example 1, imagine that r is member of rdles
client, user and authenticated_user, and that the
bank policy requires a preliminary authentication phase
to identify its clients. This can be implemented by
having (authenticated_user, client’) € %; hence
authenticated_-user must be present in p to enable the
evolution of given above.

Example 2 shows that some form of ‘default’ réle may be
needed to kick-start users’ activities. Hence, p in r{ P}, is
used both to record the réles activated in the session and to
assign some default rdles to r at the outset.

Typing Identifiers:

(MIo)
I()=pa:Cl -eN,UYV

I'r_ :p[E:g]

Typing Processes:

(T-InpuT)
Cra:R(T) RePp) T,x:T;pr’ P

o "Z) a(x).P

(T-ROLE)

Crr:p'[a:Cl Rep' R'ePp) T;pU{RIF P Rep

(T-Inz)

I'(Q)=plb:C,a:C,b :C"] _eN, UV
l'ra:C

(T-Outpur)

Tru:R(T) Trv:T RePp) iptl P
F;pl—fu(v).P

(T-YIELD)
Tip— (R} H P

| 0) l—f’ role R.P

| o) I—ZD yield R.P

(T-Ni) (T-Par) (T-BanG) (T-MaTtcH) (T-Res)
Cipt? P Tipt?Q Tipel P Cipr? P T,a" R(T);p+’ P
C;p -7 il Cip? P Q ip 2P o2 [u=v]P I;p 7 (va:R)P
Typing Systems:
(T-EmprY) (T-Session) (T-SysPar) (T-SysRes)
Trr:pfa:Cl pcp Tiptl P YA T¥B T,d"RI)FA
r%0 r+% ri P}, r?A|B % (va":R)A

Table 2. Typing Rules

2 Static Semantics

The type system described below provides static guaran-
tees that the set of actions performed by any user during the
computation respects the RBAC schema, given an initial set
p of activated rdles. The syntax of types can be defined by
the following productions (recall that denotes a possibly
empty tuple of entities of kind _)

pla:Cl| C
R(T)

Message Types T
Channel Types C

Type pla; : R(Ty),...,a, : R,(T,)] can be assigned to a
user r belonging to roles in p and owning channels a’ ordi-
nately of type R(T). Type R(T) can be assigned to channels
exchanging values of type T and belonging to rdle R.

A typing environment T is a finite partial mapping from
N, UV into types; thus we write I'(_) = T to refer to the
type T of the user name or variable _. A typing environment
can be extended as follows:

Ix:TETW{x:T}
Ia:CsT"

where

I(s) = I'(s) ifs#r
5)= pla:C,b:C) ifs=r,agb,

and I['(r) = p[b : C]

In the rest of the paper, we denote with & the union of func-
tions/relations with disjoint domains. A typing environment
I" can be used to type a system under a schema (U; $) only
if the role information in I respects the associations in U.
This intuition is formalized by the following definition.

Definition 2.1. Given a RBAC schema (U;?) and a typ-
ing environment I', we say that I' respects U if, for all
r € dom(l') with T'(r) = pla; : Ri(T1),...,a, : R,(Ty)],
it holds that U(r) = p and U(a)) = {R;}, foralli =1,...,n.

The primary judgments of the type system are of the
form [+* A, that should be read as “the system A is well-
formed with respect to environment I" and relation . This
fact, together with the requirement that I respects U, im-
plies that A respects the RBAC schema (U;). To infer the
main judgment, we rely on two auxiliary judgments, one for
identifiers and one for processes. Judgment I' +- u : T states
that the identifier u has type T in I'; judgment I';p +7 P

states that P respects I" and when it is run in a session of
r with rdles p activated.

The typing rules are collected in Table 2. Most of them
are self-explanatory; we comment below the most signifi-
cant ones, i.e. those related to the actions in our calculus.
The underlying idea beyond these rules is that an action can
be executed only if the current session has activated a role
enabling the action. Rule (T-Inpur) states that, for typing
a(x).P in a session of where rdles p are activated, we need
to establish that a” has type R(T) in I', that inputs over a
channel of group R can be performed when playing rdles
p and that P is typeable once assumed that x has type T.
Rule (T-Outpurt) is similar: it checks that an output over
a channel of group R is allowed when réles in p are acti-
vated. Moreover, it also requires that the transmitted value
v can be assigned type T in I'. Rule (T-ROLE) states that for
typing process role R.P in a session of r where roles p are
activated, we need to check that r can assume rdle R, that p
enables the activation and that P is typeable for r having ac-
tivated p U {R}. Rule (T-YieLD) states that process yield R.P
is legal for r only when R has been previously activated and
if P is typeable for » when R is off.

Finally, notice that in rules (T-Res) and (T-SysREs) the
type of the restricted channel is not tracked in the restriction
construct. Indeed, for typechecking purposes, it suffices to
ensure that the new channel is used coherently by all the
processes accessing it. To this aim, we only need to invent
a suitable T when applying the rules and verify that all the
accesses to the channel conform to 7.

Definition 2.2 (Well-typedness). Given a RBAC schema
(U;P) and a system A, we say that A is well-typed for
(U;P) if there exists a typing environment I” respecting U
such that T 7 A.

We now prove the soundness of the type system in the
standard way, i.e., by proving subject reduction and type
safety, which ensure that only systems abiding by the RBAC
schema are allowed (i.e., users performing actions permit-
ted by their duly activated rdles).

Theorem 2.1 (Subject Reduction). If T+ A and A —
A’ thenT ¥ A’.

Theorem 2.2 (Type Safety). Let A be a well-typed system
for (U;P). Then
1. whenever A
p S U
2. whenever A = (va’: f\;)(A’ I r{roleR.P},), it holds
that R € U(r) and R" € P(p)
3. whenever A = (vz?:ﬁ)(A’ I r{yield R.P},), it holds
thatR € p
4. whenever A = (va': ﬁ)(A’ I i b(x).P1,), it holds that
either b':S € @R and S? € P(p), or b" ¢ a” and
S’ € P(p), where {S} = UD")

(va :RYA" || r{Pl,), it holds that

5. whenever A = (va’: ﬁ)(A' I | b%n).P1,), it holds
that either b*:S € a’:R and S' € P(p), or b* ¢ a’ and
S' e P(p), where {S} = UD®)

Example 3. Let us consider again the banking scenario
described in Example 1. To illustrate the type system in-
troduced above, let us give a possible typing for the sys-
tem. Let T,y = cashier({request}[]) be the type of the
cashiers, i.e., channels belonging to role cashier and ex-
changing values of type {request}[]. Type {request}[]
represents the possible requests of clients; syntactically,
values of this type are names of users belonging to rdle
request which do not provide any channel. Moreover, we
let

T, = (p U {client})[dequeue : cashier _get(T)]

be the type of r. This represents users belonging to rdles in
pU{client} and owning a channel named dequeue of type
cashier_get(7,y,). Then, a suitable typing environment I"
is

re—Tg
s > p'[enqueue : cashier req(T,),
cr i Teshy oo oyCnt Tegnl
withdrw_req — {request}[]
dep_req — {request}[]
L

stop — {request}[].
A suitable permissions-to-roles assignment P is

{cashier_req!,
cashier_get?, cashier'} C P(client);
{client'} C P(p);
AU {cashier_req?,
scheduling’, scheduling',

cashier_get', cashier’} C P(p');

where A € A is a set of action permissions that allow the
handling of client’s requests. The system of Example 1 is
well-typed for any schema (U, P) such that I respects U.

Example 4. In the real world, it is unrealistic to allow any
bank client to ask for any kind of bank operation. For in-
stance, when a client applies for credit, she is always asked
for some credentials. To model this finer scenario, we let
each available operation to be modeled as a specific method,
which can be activated through a specific channel (e.g.,
channel wdrw handles withdraw requests, opn handles open
account requests, cc handles credit card requests, etc.). The
communication along different channels requires different

2001

puter Science.

1995

Press, 2002.

47, 1996.

