
A Survey of Some Implementation Techniques for
Security Membranes?

Marc Lacoste

Distributed Systems Architecture Department, France Télécom R& D.
marc.lacoste@rd.francetelecom.com

Abstract. The notion of security membrane appears as an emerging concept in
the design of secure languages for global computing. Membranes separate the
computational behavior of a site from the security code controlling access to site-
located resources. We provide a survey of some of the challenges which arise
when trying to implement security membranes in an execution platform such
as an operating system. We identify four main design issues: the choice of a
security model; the type of architecture for the execution environment; the layer
at which to place security mechanisms; and the assurance level of the platform. In
each case, we discuss possible trade-offs between security, flexibility, simplicity,
and trustworthiness. We then show how applying a component-based approach to
design and implement the execution environment can help to reach an acceptable
compromise between such properties.

1 Introduction

The notion ofsecurity membraneis increasingly attracting attention for the design
of secure languages for global computing environments, as witnessed by a number
of recent papers [11, 23, 38, 45]. The aim of a membrane is to clearly separate the
computational entities of a location, generally modeled as a number of processes
running in parallel, from a generic controller, themembrane(also calledguardian)
which supervises the behavior those entities at run-time, and acts as a unique gateway
with the outside of the location [11, 45]. Thus, a location named` can be modeled as
` (M){ P }, whereM is a specification of the membrane behavior, andP is a parallel
composition of processes. A membrane should be seen as an enhanced container that
can provide fine-grained control over the semantics of communication or mobility for
localized processes.

A membrane can also be used for security-specific purposes to protect the location,
by filtering incoming and outgoing messages. This allows to realize a security domain,
by selectively controlling access to a group of processes which share a common security
policy. This policy is often expressed as a type system [13, 16, 24, 28], against which
processes will be type-checked, either statically or dynamically, to ensure safe behavior.
Location` can then be writteǹ (π , RM){ P }, whereπ is a set of types defining the
location security policy, andRM is areference monitor[2], abstract machine in charge

? This work has been partially supported by EU FET Global Computing initiative, project
MIKADO IST-2001-32222.

of enforcing the authorization policyπ. In general, a clear separation is made between
the programmer who implements the process behaviors, and the network administrator
who defines the security policy, for a site or a group of sites.

So far, research on the protection of location resources in a global computing
environment has mainly focused on language-based security, for instance by defining
numerous type systems for distributed process calculi with locations. But is this
enough? What is needed in practice to implement a security membrane? In existing
approaches, little is said about effective implementation requirements. The emphasis is
put on proving theoretical properties, like type safety results, leaving enforcement in an
execution platform to traditional code verification techniques, like model checking or
proof-carrying code [41]. Yet, some of these methods still lack maturity. For instance,
most automated verification tools for mobile code, like model-checkers and theorem
provers, reach their limits for large-size systems, and a human intervention is often
needed to carry out the proof of safety. Still, providing strong end-to-end security
guarantees in software infrastructures is critical to protect assets located within network
locations against unauthorized disclosure and improper modification, while ensuring
service availability to legitimate users. Such security requirements call for strong
protection mechanisms down to the lowest software layers like the operating system,
which serves as a foundation to guarantee security at higher levels.

We address this problem by studying in this paper what are the practical implemen-
tation challenges for the realization of a security membrane, encompassing not only
the language aspects, but also the platform-related issues, in particular in the operating
system. The objective is to acquire an overall perspective of some of the critical design
parameters for the effective implementation of such a membrane.

A first sensible design principle for controlling access to location resources is to
clearly separate the security policy from the enforcement mechanisms. The former
captures the protection requirements to be satisfied, for instance gathered after a vulner-
ability analysis. The latter should be understood as a Trusted Computing Base (TCB),
defined in the Orange Book [50] as “the totality of protection mechanisms within a
computer system – including hardware, firmware and software – the combination of
which is responsible for enforcing a security policy. A TCB consists of one or more
components that together enforce a unified security policy over a product or system.”
Hence the need for a bird’s eye view of security membrane design, which should not be
limited just to language issues.

The above separation enables access control mechanisms to be reused to enforce
different security policies. As such, it has a direct impact on the overall flexibility of the
security membrane. This requirement is also motivated by the need to federate several
authorization policies in global computing networks, seen as superpositions of multiple
heterogeneous subsystems, each endowed with its own security policy.

A membrane should (at least) guarantee the following properties:

Security: no illegitimate access to resources should be possible; access control
mechanisms should guarantee complete mediation, i.e., they should be non-
circumventable; they should also be tamper-proof, to preserve integrity; finally,
the principle of least privilege should be enforced to avoid abusive propagation
of delegated access rights.

Flexibility: the membrane should support multiple authorization policies, and allow
fine-grained access control; it should also enable dynamic management of access
rights to deal with unpredictable changes in the environment of the location; finally,
it should provide mechanisms to manage the delegation of privileges.

Performance: the impact of security checks on the performance of running processes
should be unobtrusive, or, at least, acceptable.

Simplicity: a principle of economy of mechanism should guide the membrane design,
so that it may be simple to implement, to use, and to administer.

Trustworthiness: the membrane implementation should be small enough to be subject
to analysis, in order to provide evidence to independent evaluators like trusted-third
parties that the protection mechanisms fulfill in a correct way the identified security
requirements for the location.

It seems difficult to find the right balance between such often conflicting properties.
We identify the following important criteria in the design of security membrane, which
may help to reach a compromise:

– The choice of the security model:what security property (i.e., confidentiality,
integrity, least privilege, etc.) is the membrane trying to enforce?

– The type of operating system kernel:operating systems architecture has greatly
evolved from monolithic and micro-kernels to more extensible systems. Which
architecture allows to reach the best compromise between the properties mentioned
above?

– The choice and location of security mechanisms:which protection mechanisms
should be used? Is language-based security sufficient? Should the membrane also
rely on operating system protection, or even on hardware security? What are the
right levels of abstraction and the appropriate software layers to place security
mechanisms in the system?

– The level of assurance of the platform:what guarantees can the platform provide
of correct policy enforcement? What metric should be used to assess the strength
of the security membrane? How trustworthy really is the access controller?

The paper provides an overview of the involved trade-offs for each key design
issue identified previously. Based on that quick survey, we then consider a possible
solution for the architecture of security membranes, by applying a component-based
approach to its design. We argue that this approach enables to build secure yet adaptable
security membranes, where flexible access control mechanisms can be easily designed
and implemented, allowing support for multiple authorization policies.

The rest of the paper is structured as follows: we first give a survey of possible
trade-offs between security, flexibility, performance, simplicity, and trustworthiness for
a security membrane, regarding: the choice of a security model (section 2), the type
of architecture for the execution environment (section 3), the layers at which to place
security mechanisms (section 4), and the platform assurance level (section 5). We then
discuss in section 6 the benefits of a component-oriented design for implementing
flexible security membranes.

2 Choosing a Security Model

A security model is an abstract description of a security policy, which forms the
theoretical setting for the expression of the policy, and provides a basis for reasoning to
prove security properties.

2.1 A Brief Overview of Existing Security Models

Overcoming the Safety Problem. The access control matrix[34] is a foundational
model describing the protection state of an authorization system. Unfortunately, proving
system safety with this model was shown to be undecidable [27]. To overcome this
difficulty, the focus of recent research on access control models has shifted towards the
following directions:

– The study of less expressive models, which can be implemented more easily,
and on which reasoning becomes possible. This restriction is at the expense of
flexibility, since in those limited models, security policies are generally static, i.e.,
the assignment of access rights from subjects to objects cannot vary in time, or has
to be done by trusted principals [3, 4].

– The extension of the access matrix withconstraintsto facilitate the verification
of security properties. Those models also capture more dynamic aspects of a
security policy, like the changing of privileges over time [12, 22, 47]. Unfortunately,
constraints-based models are hard to implement due to the complexity of the logical
languages used to express the constraints.

Thus, a compromise has to be reached between: the expressiveness of the security
model, which is a first metric of its genericity and flexibility; the simplicity of
implementation; and the easiness of enforcing and verifying security properties within
the model.

Which Security Policy? Access control policies may be classified according to the
security properties one wishes to prove on a system. Discretionary access control
schemes, like those found in traditional UNIX security, reach their limits for systems
with strong security requirements. A mandatory approach to security is then needed, so
that authorization mechanisms may not be circumvented. The covered spectrum is quite
broad, since the explored concepts range from simple properties like confidentiality [4]
and integrity [9, 10], to more advanced principles like least privilege and separation
of duties [12, 22, 47]. For instance, see [7] for a detailed comparison of some access
control models and their expressive power.

Confidentiality Policies. A number of lattice-based models, like the one from Bell
and Lapadula [4], focus on preventing unauthorized disclosure of information, notably
for multi-level military-grade security systems. These models enable extended analysis
of information flows.

Integrity Policies. Other models try to preserve the integrity of systems. For instance,
the Biba integrity model [9] is the exact dual of the Bell-Lapadula one, where security
levels classify the integrity of information instead of its confidentiality. Clark and
Wilson [14] provide a model more adapted to commercial environments by introducing
integrity constraints. Boebert and Yain [10] study non-hierarchical mandatory integrity
policies, and introduce the notion oftype-enforcement, used for instance in the DTE
(Domain and Type Enforcement) model for UNIX security [3]:typesare assigned to
resources, and processes are grouped intodomains, which grant a number of access
rights over specific types.

Least Privilege Policies. This family of policies tries to enforce the concept of
separation of duties(SoD): each task in a sequence of operations has to be performed
by a different subject [47]. A variant is the Chinese Wall [12] policy, where a history of
accesses to resources is kept to resolve conflicts of interests in commercial systems. A
formal study of different types of least privilege policies can be found in [22].

Role-Based Policies. By introducing the abstraction ofrole, the RBAC (Role-Based
Access Control) model [44] makes administration of access rights easier. Users are
assignedroles which confer permissions over a set of resources. This model can
represent several classes of security policies [42], and is a first step towards policy-
neutral access control (cf. section 2.2). The price to pay is a greater complexity: for
instance, the NIST RBAC standard [19] distinguishes no less than four variants of
the model, such asflat RBAC, which defines assignments of roles to users and of
permissions to roles,hierarchical RBAC where roles are structured into a hierarchy,
andconstrainedRBAC which enables expression of additional constraints to enforce
separation of duties.

2.2 Towards Policy-Neutral Access Control

Principles. This multiplicity of security models contributed to an absence of agree-
ment as to what should be the security model to implement in a distributed platform or
operating system kernel, since each system supports his own classes of security policies
based on a platform-specific security model. This motivated a new approach to autho-
rization calledpolicy-neutral access control, where authorization mechanisms should
be agnostic vis-à-vis a security model. Since no single policy can claim to capture all
the system protection requirements for different execution environments [37], the main
advantage of policy-neutral authorization is to support multiple security models with a
single mechanism. Thus, a wide range of models and policies can be enforced without
need to change the security infrastructure, which is also more modular. In the case
of wide-area networking, this approach allows to federate multiple security policies
with a unified authorization mechanism. Indeed, federation of security policies is a key
issue when implementing a secure infrastructure for global computing, where multiple
heterogeneous networks, each governed by its own security policy, must be connected
transparently.

Policy Description and Composition Languages. Several languages have been
designed, both to describe authorization policies in a policy-neutral manner, or to
reconcile different security policies. For instance: the ASL [31] authorization language
supports SoD and Chinese Wall security models; the ORION++ [8] system enforces
different policies in database environments. In each case, enforcement mechanisms
are clearly separated from the security policy, a single security server supporting
multiple authorization policies. Policy reconciliation languages such as [51] define
policy algebras, abstract descriptions independent of enforcement mechanisms, which
allow to decentralize policy specifications, and possibly to support unknown policies,
expressed as incomplete specifications. Another approach is that of [46], where policy
composition amounts to the composition of automata.

Some Implementations Some policy-neutral access control mechanisms have al-
ready been implemented for different types of kernels. For instance: the DTE-
based confinement mechanisms for UNIX processes [3]; the support of multiple
security models implemented in Linux as kernel modules [52]; or, the SELINUX

architecture [48]. In the MACH micro-kernel [39], access request interception is realized
by a policy-neutral security server inside the micro-kernel, while policy-decision is
implemented outside the micro-kernel as an security server, which is dependent on
a specific security model, and which can be replaced. Other implementations can be
found in extensible [25] or component-based [32] kernels.

3 Selecting the Type of Kernel

The operating system provides applications with an abstract view of resources contained
in a location: CPU, memory, file system, network bandwidth, etc. It offers primitives
to manage resource sharing and protection. The system is generally composed of two
types of components, which may, or may not reside within the same protection domain:

– The kernel has access to all hardware resources: there, the CPU can execute
security-sensitive instructions in privileged mode.

– Higher-levelsystem servicesare directly used by applications.

3.1 First Trends

General laws stating the impact of an OS architecture on security or performance are
hazardous, since the drawn conclusions may be contradicted by the design of some
specific systems. Nevertheless, in what follows, we try to sketch some general directions
for trade-offs.

The security of the architecture strongly depends on whether services are located
within the kernel protection domain, or are implemented as separate processes. Creating
several distinct domains is in favor of stronger security: each application remains
confined within its own address space, and cannot corrupt other parts of the system.
However, this separation is made at the expense of system performance: each access
request to hardware resources coming from an application-level domain requires a
system call, costly due to multiple context switching with the kernel protection domain.

3.2 Different Types of Kernels

Monolithic Kernels. Traditional“monolithic” kernels like Linux or PALM OS inte-
grate system services within the kernel protection domain. This solution results in a
large-size and unstructured OS providing little flexibility. The isolation of a specific
component within the kernel remains difficult. Upgrades often require recompiling
the complete kernel. Due to its complexity, the OS contains many security loopholes:
attacks on a kernel component are almost impossible to confine and will, more often
than not, take control of the overall system. Despite such limitations, these systems
generally present good performance results, since execution remains confined within
the kernel address space, without need for context switching.

Micro-Kernels. In micro-kernels like QNX [29], services are run as separated
processes which communicate via IPCs (Inter-Process Communication). Both the
protection domains, which behave as confinement units, and the reduced kernel
size make those systems much safer. They are also more flexible: the modular
kernel structure allows to dynamically insert new services within the OS. Reduced
performance may be the inherent limitation of this type of architecture, due to the
cost of IPC mechanisms. Note that the overhead of an access control mechanism is
lower when the authorization server is located outside the kernel, since the number of
cross-domain invocations is then reduced. The trade-off of performance is in that case
a weaker security.

Extensible Kernels. Extensible kernels[17, 20] are currently preferred for embedded
systems, notably those with a single address space like SPIN [6]. Eliminating from
the architecture unnecessary abstractions – like heavyweight processes, which are
replaced by threads – improves performance, since cross-domain context switching
is less costly. These minimal kernels only contain the absolutely essential services to
multiplex hardware resources. Hence, the TCB is smaller and easier to certify, resulting
in higher-assurance kernels. However, these systems are quite vulnerable to attacks
without any additional protection mechanism1, since they can be easily reconfigured
by dynamically downloading modules within the kernel which may contain malicious
code.

Component-Based Kernels. Finally, component-based kernelslike THINK [18]
are extensible kernels which allow a greater flexibility thanks to a more uniform
architectural model : the entire kernel is built from an assembly of elementary units
of reconfiguration calledcomponents, which are composable and reusable to design
minimal dedicated systems. Compared to traditional systems, performance results show
no significant degradation due to componentization.

1 Extensible kernels are often written using strongly-typed programming languages: well-
defined language semantics allows to produce safety proofs, which can be checked before
downloading code into the kernel.

A Comparison. The above discussion is summarized in figure 1. Note that as
the structure of the kernel is more clearly defined, its architecture offers more
implementation hooks for flexibility.

Component-Based
KernelKernel

Extensible

Security

Performance

Flexibility

Simplicity

Property

- -

+ +

- -

- -

+ + / - - / + +

- - / +

+

+

+

+ +

+ +

+ +

+

+ + +

+ + +

Monolithic Kernel Micro-Kernel

Fig. 1. Comparison of Different Types of Kernels.

4 Placing Security Mechanisms at the Right Abstraction Level

4.1 Hardware Solutions

Protection mechanisms may be implemented at thehardware level. Such a solution is
truly minimal, enforces complete mediation, and provides fail-safe and tamper-resistant
protection against internal, unintentional, or malicious threats to system integrity.
Historical protection domains were implemented as hardware mechanisms in MUL-
TICS [4]. Other examples of trusted hardware protection include: the MMU (Memory
Management Unit) which confines applications by defining separate address spaces; co-
processors with a secure mode such as [36]; or bus-level exclusion mechanisms [26].

4.2 Language-Based Solutions

Protection may also belanguage-based, using type-safe programming languages such
as JAVA . These languages do not allow direct memory addressing, and enforce complete
mediation using the concept ofinterface, unique access point to system resources.
Language-based security solutions are quite flexible, and allow to realize easily fine-
grained access control. Yet, their security is somewhat weaker than OS-level protection
mechanisms, the attacker often taking complete control of a vulnerable run-time system.
These solutions also require additional software layers (compilers, virtual machine) to
be trusted. Thus, the TCB size is increased, making the system possibly more difficult to
certify. For instance, see [30] for a comparison between language and OS-based security
mechanisms.

4.3 Some Implementation Techniques

Between those two extremes co-exist a wide range of authorization mechanisms which
can be implemented from kernel to application levels. A detailed comparison is beyond
the scope of this report. Traditional solutions for discretionary access control like
capability-based systems [35] are well-known. They only provide limited protection to
confine the execution of programs with root privileges. Different forms of interposition
allow enforcement of mandatory security policies: system call interception [5, 43], the
system call level providing a well-defined interface to enforce complete mediation of
security-sensitive operations; authorization hooks in kernel space [52]; and software
wrappers to sandbox applications [1] or kernel modules [21]. Other solutions, more
related to dynamic optimization, like program shepherding [33] or return address
protection [15] can also be used to thwart buffer overflow or code injection attacks
within the kernel.

The invasiveness of an access control mechanism will generally decrease as it is
placed closer to the kernel, since context switching between user and kernel spaces
will be less frequent. Reducing the distance – in terms of number of software layers to
cross – between the authorization mechanism and the system resources to protect will
also improve security, making mechanisms less likely to be bypassed, and introducing
fewer security flaws. In that case, however, security enhancements will more difficult to
reconfigure, requiring extensive changes or kernel recompilation.

5 Evaluating the Assurance Level

After selecting a security model and a type of kernel, and designing a security
architecture where security mechanisms are placed in the most vulnerable software
layers, one key issue remains: to convince other parties of the trustworthiness of the
security membrane implementation. For low assurance levels, testing methodologies
may be sufficient, using both unit testing and system testing to ensure that individual
components are properly integrated. Kernels aiming for higher assurance levels would
need to be verified using formal evaluation methodologies like the Common Criteria
(CC) [40]. Code verification techniques needed to reach a given level of assurance
may also be used to verify code safety for modules downloaded within the security
membrane [41]. Existing verification algorithms and tools are currently limited to
evaluating small systems, partly due to the computational power needed to carry out
large-scale verification. Thus, proving correctness of complex security membranes is
not yet within reach.

6 Towards Component-Based Security Membranes

In the previous sections, we explored some of the main trade-offs between security,
flexibility, performance, simplicity, and trustworthiness, for different design parameters
when implementing a security membrane. We now concentrate on two key properties
for membranes in a global computing environment, often conflicting, and which need
to be reconciled: reconfigurability and security. We then explore the benefits of a
component-oriented design for implementing flexible yet secure membranes.

6.1 Reconciling Security and Reconfigurability

The advent of global computing has required infrastructures to become more adaptable
and reconfigurable, to cope with the increasing number of wireless networks and
the heterogeneity of mobile terminals. At stake is the extreme dynamicity of those
environments, where both users and executable code are mobile. Execution contexts
are characterized by the addition of new features on the fly, frequent downloads of
platform updates, and personalization of existing services. However, reconfigurability
puts security at risk, for instance when untrusted components are downloaded into a
security infrastructure.

These infrastructures are generally extremely vulnerable and unreliable. Attacks,
of increasing strengths and numbers, take advantage of the multiplicity of available
paths for information flow, in overly complex systems. They also thrive on the size
of extremely decentralized infrastructures, where applying a uniform security policy is
nearly impossible.

Unfortunately, so far, reconfigurability has been considered orthogonally to protec-
tion. Among many explanations:

– Designs for security architectures ensure safe component reconfiguration within the
limits of a specific security model. Reconfigurability has been applied with limited
success to the security architecture itself that often remains monolithic.

– Security has simply been "forgotten" in a number of adaptable middleware for
safety-critical and real-time systems.

– Traditional protection techniques are difficult to adapt to the context of wide-
area systems. The architecture may be too monolithic, or demand too many
computational and networking resources.

A compromise between security and flexibility has to be reached to win the trust of end
users. Can secure yet reconfigurable membranes be designed and implemented using
the same abstractions for reconfiguration and security architectures?

6.2 Components: a Solution for Reconfigurable and Secure Membranes?

We propose to reach such a goal by adopting a component-based approach to membrane
design. This choice is motivated by a need for an integrated vision of security in
global computing environments: indeed, grafting isolated and perimetric protection
mechanisms on existing infrastructures is highly inadequate, since many loopholes and
security breaches in the system are overlooked. A major advantage of component-
based technology is to obtain with a single design a system that is simultaneously
reconfigurable and secure.

Componentsare usually described as entities encapsulating code and data, endowed
with an identity, which appear in software systems as units of execution, configuration,
administration or mobility: “a software component is a unit of composition with
contractually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition to third
parties” [49]. Building a system according to the component paradigm amounts to
composing reusable units in a recursive way, since the assembly of a group of
components allows creating new components at a higher level of abstraction.

Component technology enables to master the complexity of software infrastructures
in terms of specification and implementation. The architect can choose the right
level of abstraction to describe and observe the system, and, at this level, is given a
homogeneous view of the infrastructure. The key argument in favor of Component-
Based Software Engineering (CBSE) is to reduce the costs of software development,
distribution, and maintenance, by reuse or mutualization of existing components. CBSE
is well adapted to the dynamic needs of global computing environments, since it allows
adapting and dynamically extending infrastructures, by addition, replacement, upgrade,
or reconfiguration of components.

A component is not only a unit of reconfiguration. It is also a unit of protection.
Although security properties are not in general compositional, CBSE enables to pre-
serve security properties by including additional security mechanisms, for instance, by
the use of type-safe languages to avoid any forms of interference between components
during the operation of composition.

6.3 Benefits of Components for Security Membranes

Components appear as an promising solution to some the main design issues we
discussed in this paper:

– Component-based design is security policy-neutral. Decoupling security policy
decision components from the components containing the protection enforcement
mechanisms enables to adopt a policy-neutral approach to security membrane
design: hence, the same infrastructure mechanisms can be reused to enforce
different authorization policies.

– CBSE also allows building a great variety of types of platforms, for instance in the
domain of operating systems, ranging from monolithic and extensible systems to
micro- and exo-kernels. We already saw in section 3 that in general the performance
impact of componentization remains reasonable.

– Furthermore, by offering a fine-grained view of system functionalities, CBSE
leaves a lot of freedom to the localization of protection mechanisms, which can
be placed closer to the hardware, if stronger security is needed; or closer to
applications, if simplicity and compatibility with existing software, e.g., no kernel
recompilation, are the leading design requirements.

– Finally, thanks to its ability to realize truly minimal kernels, CBSE allows to build
platforms with potentially high assurance levels.

These arguments are in favor of a component-based solution to achieve a good
compromise between the various criteria we identified for the design of a security
membrane. Given the breadth of the problem, much research remains still to be done in
order to fully validate this claim.

7 Conclusion

The notion of security membrane appears as an emerging concept in the design of secure
languages for global computing environments. Membranes separate the computational
behavior of a site from the security code controlling access to site-located resources.
However, an integrated view of the involved design issues is not yet achieved.

This brings forth new challenges for a practical implementation, which cannot be
addressed by mere restriction to language-based aspects. In this paper, we studied some
of these challenges, putting the focus on platform-related issues, in particular at the
operating system level. We identified four critical design parameters for an effective
implementation, namely the choice of a security model, the type of architecture for
the execution environment, the layers at which to place security mechanisms, and the
assurance level of the platform. In each case, we discussed possible trade-offs between
key properties for a security membrane such as security, flexibility, performance,
simplicity, and trustworthiness.

The proposed solution to reach a compromise between these properties is to design
and implement a security membrane using the component-based paradigm, which
maintains a delicate balance between reconfigurability and security. This choice enables
the creation of different types of infrastructures without real performance penalties.
The concern for modularity allows exploring several security models, and placing the
access control mechanisms at different abstraction levels. Furthermore, component-
based design may create truly minimal infrastructures, which could help to reach
high assurance levels, to win the trust of end users. This approach allows adapting
straightforwardly the system to the changes which may occur during its life-cycle,
without really endangering the security of the infrastructure, since a component is both
a unit of reconfiguration and of security. To further explore these ideas, more studies
of integration of component-based concepts in practical implementations of security
membranes will need to be considered. Thus, we hope this promising approach will
emerge in the near future as a solution for the design of secure yet reconfigurable
membranes.

References

1. A. Acharya and M. Raje. MAPbox: Using Parameterized Behavior Classes to Confine
Untrusted Applications. InProceedings USENIX Security Symposium, 2000.

2. S. Ames, M. Gasser, and R. Schell. Security Kernel Design and Implementation: An
Introduction.IEEE Computer, 16(7):14–22, 1983.

3. L. Badger, D. Sterne, D. Sherman, K. Walker, and S. Haghinghat. Practical Domain and
Type Enforcement for UNIX. InProceedings IEEE Symposium on Security and Privacy
(S&P’95), 1995.

4. D. Bell and L. Lapadula. Secure Computer System: Unified Exposition and Multics
Interpretation. Technical Report ESD-TR-75-306, Electronics Systems Division, Bedford
USAF Base, DoD, 1976.

5. M. Bernaschi, E. Gabrielli, and L. Mancini. REMUS: A Security-Enhanced Operating
System.Transactions of Information and System Security (TISSEC), 5(1):36–61, 2002.

6. B. Bershad, S. Savage, P. Pardyak, E. Sirer, M. Fiuczyncki, D. Becker, C. Chambers, and
S. Eggers. Extensibility, Safety and Performance in the SPIN Operating System. In
Proceedings ACM Symposium on Operating Systems Principles (SOSP’95), 1995.

7. E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A Logical Framework for Reasoning about
Access Control Models.ACM Transactions of Information and System Security, 6(1):71–
127, 2003.

8. E. Bertino, S. Jajodia, and P. Samarati. Supporting Multiple Access Control Policies in
Database Systems. InProceedings IEEE Symposium on Security and Privacy (S&P’96),
1996.

9. K. Biba. Integrity Considerations for Secure Computer Systems. Technical Report ESD-TR-
76-372, Bedford USAF Base, DoD, 1997.

10. W. Boebert and R. Yain. A Practical Alternative to Hierarchical Integrity Policies. In
Proceedings National Computer Security Conference, 1985.

11. G. Boudol. A Generic Membrane Model. InProceedings Workshop on Global Computing
(GC’04), 2004.

12. D. Brewer and M. Nash. The Chinese Wall Security Policy. InProceedings IEEE Symposium
on Security and Privacy (S&P’89), 1989.

13. L. Cardelli, G. Ghelli, and A. Gordon. Types for the Ambient Calculus.Information and
Computation, 177:160–194, 2002.

14. D. Clark and D. Wilson. A Comparison of Commercial and Military Computer Security
Policies. InProceedings IEEE Symposium on Security and Privacy (S&P’87), 1987.

15. C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, Q. Zhang, and
H. Hinton. StackGuard: Automatic Adaptive Detection and Prevention of Buffer Overflow
Attacks. InProceedings USENIX Security Symposium, 1998.

16. R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for Access Control.Theoretical
Computer Science, 240(1):215–254, 2000.

17. D. Engler, M. Kaashoek, and J. O’Toole. Exokernel: An Operating System Architecture for
Application-Level Resource Management. InProceedings ACM Symposium on Operating
Systems Principles (SOSP’95), 1995.

18. J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller. Think : a Software Framework for
Component-Based Operating System Kernels. InProceedings USENIX Annual Technical
Conference (USENIX’02), 2002.

19. D. Ferraiolo, R. Sandhu, S. Gavrila, and D. Kuhn. Proposed NIST Standard for Role-Based
Access Control.ACM Transactions of Information and System Security, 4(3):224–274, 2001.

20. B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The Flux OSKit: A
Substrate for Kernel and Language Research. InProceedings ACM Symposium on Operating
Systems Principles (SOSP’97), 1997.

21. T. Fraser, L. Badger, and M. Feldman. Hardening COTS Software with Generic Software
Wrappers. InProceedings IEEE Symposium on Security and Privacy (S&P’99), 1999.

22. V. Gligor, S. Gavrila, and D. Ferraiolo. On the Formal Definition of Separation of Duty
Policies and their Composition. InProceedings IEEE Symposium on Security and Privacy
(S&P’98), 1998.

23. D. Gorla and R. Pugliese. Enforcing Security Policies via Types. InProceedings Conference
on Security in Pervasive Computing (SPC’03), 2003.

24. D. Gorla and R. Pugliese. Resource Access and Mobility Control with Dynamic Privileges
Acquisition. In Proceedings International Colloquium on Automata, Languages and
Programming (ICALP’03), 2003.

25. R. Grimm and B. Bershad. Providing Policy-Neutral and Transparent Access Control in
Extensible Systems. Technical Report UW-CSE-98-02-02, University of Washington, 2002.

26. T. Halfhill. ARM Dons Armor : TrustZone Security Extensions Strengthen ARMv6
Architecture. Microprocessor Report, 2003. Document availble at the URL:
http://www.arm.com/miscPDFs/4136.pdf.

27. M. Harrison, W. Ruzzo, and J. Ullman. Protection in Operating Systems.Communication of
the ACM, 19(8):461–471, 1976.

28. M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents.
Information and Computation, 173:82–120, 2002.

29. D. Hildebrand. An Architectural Overview of QNX. InUSENIX Workshop on Micro-Kernels
and other Kernel Architectures, 1992.

30. T. Jaeger, J. Liedtke, and N. Islam. Operating System Protection for Fine-Grained Programs.
In Proceedings USENIX Security Symposium, 1998.

31. S. Jajodia, P. Samarati, and V. Subrahmanian. A Logical Language for Expressing
Authorizations. InProceedings IEEE Symposium on Security and Privacy (S&P’97), 1997.

32. T. Jarboui, J.-P. Fassino, and M. Lacoste. Applying Components to Access Control
Design : Towards a Framework for OS Kernels. InProceedings International Conference on
Dependable Systems and Networks (DSN’04), 2004.

33. V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure Execution Via Program Shepherding.
In Proceedings USENIX Security Symposium, 2002.

34. B. Lampson. A Note of the Confinement Problem.Communications of the ACM,
16(10):613–615, 1973.

35. H. Levy. Capability-Based Computer Systems. Digital Press, 1984.
36. D. Lie, C. Thekkath, and M. Horowitz. Implementing an Untrusted Operating System

on Trusted Hardware. InProceedings ACM Symposium on Operating Systems Principles
(SOSP’04), 2004.

37. P. Loscocco, S. Smalley, P. Muckelbauer, R. Taylor, S. Turner, and J. Farell. The Inevitability
of Failure: the Flawed Assumption of Security in Modern Computing Environments. In
Proceedings National Information Systems Security Conference, 1998.

38. F. Martins and V. Vasconcelos. Controlling Security Policies in a Distributed Environment.
Technical Report DI–FCUL–TR 04–01, Department of Computer Science, University of
Lisbon, 2004.

39. S. Minear. Providing Policy Control over Object Operations in a Mach-Based System. In
Proceedings USENIX Security Symposium, 1995.

40. National Institute Of Standards and Technology. Common Criteria for Information
Technology Security Evaluation (CC). Technical Report CCIMB-99-031, 1999.

41. G. Necula. Proof-Carrying Code. InProceedings ACM Symposium on Principles of
Programming Languages (POPL’97), 1997.

42. S. Osborn, R. Sandhu, and Q. Munawer. Configuring Role Based Access Control to Enforce
Mandatory and Discretionary Access Control Policies.ACM Transactions on Information
and Systems Security, 3(2), 2000.

43. N. Provos. Improving Host Security with System Call Policies. InProceedings USENIX
Security Symposium, 2003.

44. R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-Based Access Control Models.
IEEE Computer, 29(2):38–47, 1996.

45. A. Schmitt and J.-B. Stefani. The M-calculus: a Higher-Order Distributed Process Calculus.
In Proceedings ACM Symposium on Principles of Programming Languages (POPL’03),
2003.

46. F. Schneider. Enforceable Security Policies.ACM Transactions on Information and System
Security, 3(1):30–50, 2000.

47. R. Simon and M. Zurko. Separation of Duty in Role-Based Environments. InProceedings
IEEE Computer Security Foundations Workshop (CSFW’97), 1997.

48. R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Ansersen, and J. Lepreau. The Flask
Security Architecture: System Support for Diverse Security Policies. InProceedings
USENIX Security Symposium, 1999.

49. C. Szyperski.Component Software Systems. Addison-Wesley, 2002.
50. U.S. Department of Defense. Trusted Computer Security Criteria (TCSEC). Technical

report, 1985.
51. D. Wijesekera and S. Jajodia. Policy Algebras for Access Control - The Predicate Case. In

Proceedings ACM Conference on Computer and Communications Security (CCS’02), 2002.
52. C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. Linux Security

Modules: General Security Support for the Linux Kernel. InProceedings USENIX Security
Symposium, 2002.

