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Abstract. This paper presents a type system to control the migration of code be-
tween sites in a concurrent distributed framework. The type system constitutes a
decidable mechanism to ensure specific security policies, which control remote
communication, process migration, and channel creation. The approach is as fol-
lows: each network administrator specifies sites privileges, and a type system
checks that the processes running at those sites, as well as the composition of the
sites, respect these policies. At runtime, well-typed networks do not violate the
security policies declared for each site.

1 Introduction

The aim of this work is the development of a security mechanism to control the usage of
system resources, such as memory andcpucycles, in the presence of code mobility. We
address this objective by means of a simple, decidable, and low complexity type sys-
tem. The system should check the integrity and the consistency of user-declared security
policies for networks, guaranteeing that well-typed networks are free of (runtime) secu-
rity violation errors. Our approach consists in a simple set-based static analysis where
the network administrators associate security policies to the sites they supervise, and by
this mean, tailor the allowed interaction in a network.
Framework. To focus on the problem, and for simplicity sake, we develop our work
using a mobile calculus tailored to the study of code migration in a distributed setting.
A natural and simple framework to study distributed mobile systems is DPI, the dis-
tributedπ-calculus of Hennessy and Riely [5], which extends theπ-calculus [9, 10] by
locating processes on a (flat) network ofsites—named places where computation oc-
curs. Communication only happens within sites (to avoid “global synchronisation”), but
processes may migrate from one to another. However, DPI presents no notion of loca-
tion of a resource: a global entity is responsible for allocating and managing memory.

A lexically scoped version of the distributedπ-calculus—thelsdπ calculus [13]—
addresses this drawback. It follows the DPI model in what respects the notions of lo-
cality (or site) and communication, but uses a lexically scoped regime for names that
rules process migration. In this way, this calculus provides anetwork-aware style of pro-
grammingin the sense that the time and the place associated with the creation of new
resources (sites and channels) is explicit in the syntax of the programs.What you see is
what you get, since the location of channels are clear in the program text, and the syn-
tax plainly express the location of the resources used, even in presence of mobile code.



Therefore, migration of resources is a subset of the resource access operations, and thus
is clearly bounded in the program’s source code. Clients do not interact remotely with
a server. Rather, they move to the site of the server and interact locally.

Thus, thelsdπ calculus seems suitable to study code migration, and to reason about
resource usage, in a distributed setting. Code migration is triggered by channels them-
selves, rather than using explicit migration primitives (for an overview of distributed
mobile calculi see a deliverable of an EU IST project [2]). We choose a monadic ver-
sion of a flat calculus because the stress of our work is purely in the control of process
migration rather than on communication, or on hierarchical issues.
Objectives.To control the migration of processes between sites, we use three security
policies, to monitor, respectively,remote communication, code migration, andchannel
creation. These policies are directly related to the actions of the calculus, and therefore
are independent from each other.Remote communicationrefers to the ability of a thread
to send a message to a resource located at a distant site.Code migration, in turn, means
that a thread may cross site boundaries, exiting its current site and entering a new one.
This operation can be understood, from the source site point of view, as an upload of
code. Finally,channel creationrepresents the ability of a thread to create a new channel
in a foreign site. Mastering channel creation is important because (1) if a thread is
able to create a channel on a remote site it means, as discussed later, that it would
be able to migrate code to that destination, and (2) it may also give rise to a denial
of service attack, if the source site creates an arbitrarily large number of channels in
the destination site, consuming important resources, such as memory. Moreover, the
topology of the network evolves dynamically, hence, sites may dynamically acquire
new site acquaintances. Nonetheless, to these newly known localities a site may upload
code, but it cannot download code from them—a ‘write-down, no read up’ policy.

The definition of a security policy for a given site consists on the enumeration of
the sites allowed to perform the monitored actions. Thereafter, the type system checks
whether these policies are followed by each process running in the site, and by the other
known sites in the network that is being checked. This system is a tool to declare how
code in those known sites may affect the computation of a given site, and to verify the
compositionally of all these sites, constituting networks. The type system checks if the
processes running at a given site respect its security policies, and if all the sites one
wants to compose in a network will interoperate without violating each other policies.

2 The calculus

In a distributed setting one asks “to which locality does a channel belong to?”. We ad-
here to thelexical scope in a distributed contextof Obliq [3], which is here understood
as the discipline under which the locality of channels is fixed throughout computation
and can be determined by straightforward code inspection. This principle must not be
disturbed by computation, in particular by code mobility. The paradigm allows us toa
priori view channels as physical resources of localities, unlike in DPI where channels
are network-wide identifiers that onlya posteriori (via a type system) get located in
sites.



Channels a, b, x ∈ C
Sites r, s, t, y ∈ S

Values v ::= val | a@s

Names n ::= a@s | s

Sets of sites R, S, T ⊆ S
Site policies P ::= {rem : R, mig : S, new T}

Processes P, Q ::= 0 | a@s ! 〈v〉 | a@s?(v) P | a@s?∗(v) P |
(P |Q) | (νa@s) P | (νs : P) P

Networks N, M ::= 0 | s{P}[P ] | (N ‖M) | (νtn) N

Fig. 1.Syntax oflsdπ.

2.1 Syntax

The syntax of the calculus is described in Figure 1. Fix a denumerable set ofchannels
C ranged over bya, b, x, and a denumerable set ofsitesS ranged over byr–t, y, dis-
joint from C. A channela located at a sites is denoted bya@s. The calculus presents
two main syntactic categories: processes and networks. At process level we find the
usual asynchronousπ-calculus constructs [1, 7]; processes are built from the inactive
process,0, and from the asynchronous output process,a@s ! 〈v〉, using three constructs:
name restriction,(νa@s) P and(νs : P) P , parallel composition,(P |Q), and input,
a@s?(v) P . We also include a form of replicated input,a@s?∗(v) P .

Site policiesP contain three kinds of policies:remote communication, process mi-
gration, andname creation. Each policy is related to an action of the calculus, and we
proceed by enumerating the names of the sites that are allowed to perform these actions.
Therefore, we relate remote communication, process migration, and name creation with
the ability to output, input, and create channels, respectively.

Sites constitute the basic building blocks for networks. A networks{P}[P ] denotes
a sites, running a processP and protected by site policyP. The setP defines the in-
teractions allowed betweens and the surrounding network. Networks are assembled
using thenetwork parallel construct(N ‖M). We use a different symbol from paral-
lel processes (c.f. (P |Q)) to stress the fact that there is no communication between
networks. The interaction between networks occurs through explicit migration of pro-
cesses among sites. Name restriction(νtn) N delimits namen, created at sitet, to
networkN .

As an example, the followinglsdπ term

r{P1}[a@s ! 〈b@r〉] ‖ s{P2}[a@s?(x@y) P ]

represents a network consisting of two sitesr ands with security policiesP1 andP2

(that we do not detail now). The output process running at siter is willing to deliver a
message to the channela from sites. As one may easily verify using the operational
semantics we define ahead, the above network reduces in three steps to

r{P1}[0] ‖ s{P2}[P [b@r/x@y]]



2.2 Semantics

The operational semantics of the calculus is presented following Milneret al [10]. We
first define acongruence relationbetween networks that simplifies thereduction rela-
tion introduced thereafter.

Adding a distribution layer to a process calculus changes the structure of the re-
sources (the channels). A resource is now (uniquely) associated to a locality, and this
fact must be taken into account by the semantics of the calculus. DPI enforces the
referred association via a system of dependent types. The syntax and the operational
semantics do not clarify to which locality a resource belongs to, and furthermore, many
processes that one may write are ruled out by the type system. The behavioural theory
is also quite elaborate.

Our approach is based on a lexical scoping discipline that makes the location of
resources clear in the program text, even in presence of mobile code. The extra structure
of resources makes the definition of the semantics more intricate. We do not think one
may keep the definition of free names of theπ-calculus without taking into account that
resources are distributed and located. Thus, instead of enforcing a correct use of names
in processes via the type system only, we devise a semantics defined along the lines of
the untypedλ-calculus, following Hindley and Seldin [6]. We believe this approach is
simpler and provides clearer programs than those not based on lexical scoping.
Free names.We start by refining the definition of free names, taking into account the
structure of located channels. Letw stand for both names and values (and consider an
additional special valuenil), and letX stand for both processes and networks. Consid-

ering thatπ ranges over{rem,mig,new}, let obj({πi : Si | i ∈ I}) def=
⋃

i∈I Si.

w subj(w) obj(w) chan(w) site(w)

s C@s ∪ {s} {s} − s
a@s {a@s} {a@s, s} a s
val ∅ ∅ − nil
nil ∅ ∅ − −

X fn(X) nm(X)

0 ∅ ∅
(X |Y ) fn(X) ∪ fn(Y ) nm(X) ∪ nm(Y )
(νtn : P) X (fn(X) ∪ {t} ∪ obj(n) ∪ obj(P)) \ subj(n) nm(X) ∪ {t} ∪ obj(n) ∪ obj(P)
a@s?(v) P fn(P ) \ subj(site(v)) ∪ obj(a@s) nm(P ) ∪ obj(a@s) ∪ obj(v)
a@s ! 〈v〉 obj(a@s) ∪ obj(v) obj(a@s) ∪ obj(v)
s{P}[P ] fn(P ) ∪ {s} ∪ obj(P) nm(P ) ∪ {s} ∪ obj(P)

Fig. 2.Free Names an Names in processes and in networks

Substitution. Equipped with a detailed notion of free names, the definition of substi-
tution is a simple decision tree. We use the auxiliary notion of name binding: a name
n binds another namem, n↪→m, if n ∈ obj(m). Note thatn ∈ obj(m) if, and only if,
m ∈ subj(n).



However, to ensure that these concepts work, we consider that in the subprocessP
of a@s?(x@y) P , one hasfn(P ) ∩ C@y = {x@y} and fn(P ) ∩ x@S = {x@y}. The
forthcoming type system ensures these conditions.

(n)[m2/m1]
def
=

8<:
m2 if n = m1

a@m2 if n = a@m1

n if m1 6↪→n

0[m2/m1]
def
= 0

(X |Y )[m2/m1]
def
= (X[m2/m1] |Y [m2/m1])

((νtn : P) X)[m2/m1]
def
=

8<:
(νtn : P) X if (1)
(νt[m2/m1]n[m2/m1] : P[m2/m1]) X[m2/m1] if ¬(1) ∧ (2)
(νt[m2/m1]n

′ : P[m2/m1]) X[n′/n][m2/m1] if ¬(1) ∧ ¬(2) ∧ (3)

(a@s?(v) P )[m2/m1]
def
=

8<:
a@s[m2/m1]?(v) P if (4)
a@s[m2/m1]?(v) P [m2/m1] if ¬(4) ∧ (5)
a@s[m2/m1]?(v

′) P [v′/v][m2/m1] if ¬(4) ∧ ¬(5) ∧ (6)

(a@s ! 〈v〉)[m2/m1]
def
= a@s[m2/m1] ! 〈v[m2/m1]〉

(s{P}[P ])[m2/m1]
def
= s[m2/m1]{P[m2/m1]}[P [m2/m1]]

1. n↪→m1 2. n6↪→m2 ∨m1 /∈ fn(X) 3. n′ /∈ {n, m, m2} ∪ nm(X)

4. v↪→m1 5. v 6↪→m2 ∨m1 /∈ fn(P ) 6. v′ /∈ {m1, m2} ∪ nm(a@s?(v) P )

Fig. 3.Substitution on names, processes and networks

Structural congruence. The structural congruence relationis the least congruence
relation closed under the rules in Figure 4. The rules are fairly standard. Networks are
congruent up toα-renaming; the parallel composition operator for networks is taken to
be commutative and associative, with0 being the neutral element; scope may enlarge or
reduce, provided that that are no capture of names. Notice that name extrusion between
site and network level is only possible with the site that has created the name.
Reduction.The rules in figure 5 inductively define thereduction relationonlsdπ terms.

RuleRN-COMM is thecommunicationrule of the calculus. It is defined only locally
and it is the standard asynchronousπ-calculus communication rule. RuleRN-COMR

defines the communication for replicated inputs. RulesRN-MIGO, RN-MIGI, andRN-
M IGR allow for processes to migrate across sites. When an input or an output operation
is carried out over a remote resource, then the process migrates to the host site of the
resource, since communication only arises locally.

The creation of a site, ruleRN-NEWS, originate a new site only visible by its creator
site. RulesRP-PAR andRN-RES allow for reduction to happen within network. Finally,
rule RN-STR introduces structural congruence into the reduction relation.

The next example illustrates a download of code from a server sites requested by
client siter. Assume thatr 6∈ fn(Q).

r{P1}[(ν req@r) dl@s ! 〈req@r〉 | req ! 〈val〉] ‖ s{P2}[(dl@s?∗(x@y) x@y?(val) Q)]



1. N ≡ M if N ≡α M

2. (N ‖M) ‖M ′ ≡ N ‖ (M ‖M ′), M ‖N ≡ N ‖M, N ‖ 0 ≡ N

3. (νtn) N ‖M ≡ (νtn) (N ‖M) if n 6∈ fn(()M)

(νsb@r) s{P}[P ] ≡ s{P}[(νb@r) P ]

(νta@s) (νub@r) N ≡ (νub@r) (νta@s) N
(νts) (νua@r) N ≡ (νua@r) (νts) N if s 6= r andt 6= u

(νts) (νur) N ≡ (νur) (νts) N if s 6= u andt 6= r

4. s{P}[P |Q] ≡ s{P}[P ] ‖ s{P}[Q]

Fig. 4.Structural congruence on networks.

s{P}[a?(v1) P | a ! 〈v2〉] → s{P}[P [v2/v1]] (RN-COMM)

s{P}[a?∗(v1) P | a ! 〈v2〉] → s{P}[a?∗(v1) P |P [v2/v1]] (RN-COMR)

s{P1}[0] ‖ r{P2}[a@s ! 〈v〉] → s{P1}[a@s ! 〈v〉] ‖ r{P2}[0], r 6= s (RN-MIGO)

s{P1}[0] ‖ r{P2}[a@s?(v) Q] → s{P1}[a@s?(v) Q] ‖ r{P2}[0], r 6= s (RN-MIGI)

s{P1}[0] ‖ r{P2}[a@s?∗(v) Q] → s{P1}[a@s?∗(v) Q] ‖ r{P2}[0], r 6= s
(RN-MIGR)

s{P1}[(νr : P2) P ] → (νsr) (s{P1}[P ] ‖ r{P2}[0]) (RN-NEWS)

N → M

N ‖M ′ → M ‖M

N → M
(νtn) N → (νtn) M

(RN-PAR,RN-RES)

N ≡ N ′ N ′ → M ′ M ′ ≡ M
N → M

(RN-STR)

Fig. 5.Reduction rules.

The client issues a new request to thedl (download) resource of the server by com-
municating a fresh channelreq. The server upon the received request migrates process
Q to the server using the acquired channel. Finally, the client fires the downloaded pro-
cess. Reduction is as follows. Security annotations were deliberately omitted since they
play no role in reduction.

r[(ν req@r) dl@s ! 〈req@r〉 | req@r ! 〈val〉] ‖ s[dl@s?∗(x@y) x@y?(val) Q] →
(RN-STR, RN-MIGO)

(νrreq@r) r[req@r ! 〈val〉] ‖ s[dl@s?∗(x@y) x@y?(val) Q | dl@s ! 〈req@r〉] →
(RP-COMR)

(νrreq@r) r[req@r ! 〈val〉] ‖ s[dl@s?∗(x@y) x@y?(val) Q | req@r?(val) Q] →
(RN-MIGI)

(νrreq@r) r[req@r ! 〈val〉 | req@r?(val) Q] ‖ s[dl@r?∗(x@y) x@y?(val) Q] →
(RP-COMM, RN-STR)

r[(ν req@r) Q] ‖ s[dl@s?∗(x@y) x@y?(val) Q]



3 Type system

The type system we present enforces the user-defined security policies inlsdπ net-
works. We guarantee that, at runtime, well-typed networks do not violate the specified
security policies.

Examples. In the following, we present some examples of erroneous networks that
should be rejected by the type system. Consider, in all examples, that sites denoted by
r, s, andt represent distinct locations.

A remote communication error occurs whenever an output to a located channel is
performed from a site not belonging to therem policy of the remote site. The next
example elucidates this situation.

Example 1.Consider networks{rem : {t}}[0] ‖ r{P}[a@s ! 〈x@y〉]. The output pro-
cess running at siter is willing to send a remote message to sites; however, this action
is not allowed, sincer is not mentioned in therem policy of s. The inclusion ofr in the
policies ofs fix the problem:s{rem : {t, r}}[0] ‖ r{P}[a@s ! 〈x@y〉].

Code migration is controlled using policy keywordmig and specifying which sites
are allowed to upload code.

Example 2.The networks{mig : {t}}[P ] ‖ r{P}[a@s?(x@y) 0] is rejected because
sites denies migration of code from siter as processa@s?(x@y) 0 intents. Includingr
in the policies ofs overcomes the problem:s{mig : {t, r}}[P ] ‖ r{P}[a@s?(x@y) 0].

The creation of remote channels is controlled by the policy keywordnew, enumer-
ating the sites authorised to create remote channels.

Example 3.Networks{new : {t}}[0] ‖ r{P}[(ν a@s) a@s ! 〈b@s〉] fails to type check
because sites denies creation of remote channels (as well as remote communications)
from siter. Networks{new : {t, r}, rem : {r}}[0] ‖ r{P}[(ν a@s) a@s ! 〈b@r〉] is well
typed.

A more trickier situation resulting from code migration is shown below.

Example 4.Consider networks{P}[b@r?(x@y) a@s ! 〈x@y〉] ‖ r{mig : {s}}[0]. The
remote messagea@s ! 〈x@y〉 is going to run at siter, since it is the continuation of a
process that migrates froms to r. Althoughr grants migration privileges tos, it does not
allow for remote communications froms, and therefore the network should be rejected.
Fix the security fault includingrem : {s} into the policies for siter.

Runtime errors. In what follows we formalise the notion of runtime error.

Definition 1 (runtime errors). Let r 6= s, E = {N |N →? νu1 . . . νuk(M ′ ‖M)},
andM of the form

r{P1}[P ] ‖ s{P2}[a@r ! 〈v〉], s 6∈ P1(rem) (1)

r{P1}[P ] ‖ s{P2}[a@r?(x@y) P ], s 6∈ P1(mig) (2)

r{P1}[P ] ‖ s{P2}[(ν a@r) P ], s 6∈ P1(new) (3)



ϕ ::= {ai : γi}i∈I site types V ::= γ@S | val @∅ value types

γ ::= ch(V )t channel types t ::= o | i | b channel tags

Fig. 6.Syntax of types.

val @∅ ≤ val @∅ γ1 ≤ γ2 S1 ⊆ S2

γ1@S1 ≤ γ2@S2
(Value subtyping)

k = i, b V1 ≤ V2

ch(V1)
k ≤ ch(V2)

i

k = o, b V2 ≤ V1

ch(V1)
k ≤ ch(V2)

o

V1 ≤ V2 V2 ≤ V1

ch(V1)
b ≤ ch(V2)

b

(Channel subtyping)

Fig. 7.Subtyping relation.

Networks that violate a security policy are in the setE . Our type safety result (the-
orem 3) guarantees that well-typed do not belong toE .
Types.The syntax for types is depicted in figure 6. We record types for sites. Asite
typeϕ is a mapping from the free channels of the site to channel types. Achannel type
γ traces the type of the values that are communicated along the channel, as well as its
usage (input, output, or both); Channels may carry other channels or basic values, as
described byvalue typesV . Thetype for channel valuesassumes the formγ@S, where
γ is the type of the channels that can be carried, andS is the set of sites hosting the
communicated channels.Channel tagsi, o, andb denote, respectively, that a channel is
used for input, for output, or for both input and output purposes.
Subtyping. The binary relation≤ on types is defined following Pierce and Sangiorgi
[12] as the least preorder relation closed under the rules in figure 7. The original in-
tuitions remain unchanged, namely that the subtyping relation is covariant for inputs,
contravariant for outputs, and invariant if the channels are used both for input and for
output purposes.
Typing. Figures 8 and 9 present the typing rules for processes and networks.

A typingΓ is a partial function of finite domain from site names to pairs(ϕ,P) of
site types and site policies. We writedom(Γ ) for the domain ofΓ . The typingΓ +x : T
denotes the type environmentΓ ′ such thatdom(Γ ′) = dom(Γ ) ∪ {x}, Γ ′(y) = Γ (y)
for y 6= x, andΓ ′(x) = T whenx 6∈ dom(Γ ), otherwiseΓ ′(x) = Γ (x) + T . The
addition of site types,γ1 + γ2, is simple the disjoit set union ofγ1 andγ2.

In processa@s?(x@y) P namey is called analias. In fact,y do not denote a site,
but it is a placeholder the for sites communicated alonga@s. When verifying security
policies the aliasy makes no sense. The policies are not written in term of aliases (bound
names) but in term of (real) sites. Therefore, aliases must be resolved to the sites they
stand for. We keep a cross reference between aliases and site names in set∆. A site
stands for itself,i.e., ∆(s) = {s}, otherwise,∆(s) is the set of sites that may instatiate
aliass during reduction.

We make use of some auxiliary notation to compress the writing of the typing rules.
The first and second projections of pairΓ (s) = (ϕ,P) is denoted asΓ (s)1 andΓ (s)2,
respectively. We writeΓ (a@s) for Γ (s)1(a). To decompose a located channela@s, one



SP-NIL
Γ ; ∆ `s 0

SP-Par
Γ ; ∆ `s P Γ ; ∆ `s Q

Γ ; ∆ `s P |Q

SP-OUT

Γ (a@r) ≤ ch(Γ (v)@∆(site(v)))o

∆(s) ⊆ Γ (r)2(rem)

Γ ; ∆ `s a@r ! 〈v〉
SP-INPR

Γ ; ∆ `s a@r?(v) P

Γ ; ∆ `s a@r?∗(v) P

SP-INP

S
def
= ∆(site(()v)) P def

= {k :
T

t∈S Γ (t)2(k) | k ∈ {rem, mig, new}}
Γ (a@r) ≤ ch(γ@S)i ∆(s) ⊆ Γ (r)2(mig)

Γ + site(v) : ({chan(v) : γ},P); ∆ + site(v) : S `r P

Γ ; ∆ `s a@r?(v) P

SP-RESC
Γ + r : (ϕ + a : γ,P); ∆ `s P ∆(s) ⊆ P(new)

Γ + r : (ϕ,P); ∆ `s (νa@r) P

SP-RESS
Γ + r : (∅,P); ∆ + r : {r} `s P

Γ ; ∆ `s (νr : P) P

Fig. 8.Typing processes.

usessite(a@s) = s andchan(a@s) = a. Thesite(val) = chan(val) = undef . Finally,
we assume that∆(undef) = ∅ and that addingundef elements to a typing or to a site
type produce no effects.

The type system includes two kinds of judgements: (a) judgementΓ ;∆ `s P means
that processP is running at sites and is well typed under typing assumptionsΓ , re-
solving aliases as specified in∆; and (b) judgementΓ ` N denotes that networkN is
well typed under typing assumptionsΓ .

An output processa@r ! 〈v〉 is well-typed if the type of channela, located atr, has
at least output capabilities and is enough (a subtype) to carry valuev. In the case that
v is a located channel, thena must be able to carry values located at that (group of)
site(s). Moreover, siter must allow any site thats stands for to remote communicate
with it. Notice that we never use the name of a site to check security polices, as we do
not distint syntactically sites from aliases. So, we always resolve the name using set∆.

To type an input processa@r?(x@y) P , rule SP-INP, we typeP considering it is
running inr, sincea@r triggers the migration ofP from s to r. Furthermore, typing
Γ is augmented with the site of valuev. The type ofsite(v) deserves to be discussed.
First of all, if v is val, then neitherΓ nor ∆ are affected. So, lettingv beb@t, we add
site t to Γ , announcingb as its unique known channel. This restriction prevents the
usage of channels located int without being explicitly created. As for the type policy,
we compute the set of policies that every site that may instanciatet agrees. This way,
we guarantee thatP will not violate the security policies in any circumstances. Finally,
we add a link between aliast and the sites that may communication througha@r. On
what concerns the checking of security, we monitor that the migration operation tor is
allowed from every site denoted bys. The following network type-checks,

s{∅}[a@r?(x@y) x@y ! 〈c@s〉] ‖ r{mig : {s}}[a@r ! 〈b@t〉] ‖ t{rem: {r}}[0]



SN-NIL
Γ ` 0

SN-PAR
Γ ` N Γ ` M

Γ ` N ‖M

SN-NET
Γ ; {s : {s}} `s P Γ (s) = (ϕ,P)

Γ ` s{P}[P ]
SN-RESS

Γ + r : (∅,P) ` N

Γ ` (νsr : P) N

SN-RESC
Γ + r : (ϕ + a : γ,P) ` N s ∈ P(new)

Γ + r : (ϕ,P) ` (νsa@r) N

Fig. 9.Typing networks.

The typing rules for the inaction process, the parallel process, and the replicated
input are fairly standard. The creation of channels requires the authorisation from the
site where the channel is being created. Notice that we do not use directly the name of
the site, but resolve it through set∆.

The typing rules for networks are found in figure 9. RuleSN-NET types a located
process in a sites{P}[P ]. ProcessP must be well typed under type assumptionsΓ ,
where the processes is running ins, having a link established to itself. Moreover, we
demand that the network policies defined at network level match exactly the policies
formulated inΓ—no process is allowed to forge security policies. When restricting a
channel,SN-RESC, we check that the destination site allows the operation. Notice the
role of the subscript site of the new construct. The remaining rules are straightforward.
Results on the type system.The results we present are standard and the proofs proceed
directly by induction.

The type and subtype system rules are syntax oriented, so an algorithm to compute
types (in polynomial time) can be found just by reading the rules backward. Notice that
there are no recursive types.

Theorem 1 (Decidability of the type system). GivenΓ andN , the problem of veri-
fying whetherΓ ` N is decidable.

Reduction preserves the typability of processes and of networks. This result uses a
standard substitution lemma, together with subject congruence.

Lemma 1. If Γ ` N andN ≡ M , thenΓ ` M .

Proof. We proceed by induction on the type derivation, analysing the last rule applied.

Theorem 2 (Subject reduction).If Γ ` N andN → M , thenΓ ` M .

Proof. By induction on the inference ofN → M . We proceed by case analysis on the
reduction relation and examine the last typing rule of the typing derivation. The proof
is straightforward.

The following result states that well-typed networks do not belong toE .

Theorem 3 (type safety).If Γ ` N andN →? M , thenM 6∈ E .

Proof. The proof is direct and proceeds by absurd.



4 Conclusions

Summary. We present a type system to control resource access, in particular via the
migration of code, in a distributed mobile calculus. We monitor three security policies:
remote communication, process migration, and channel creation, corresponding to the
actions of the calculus, these policies enabling us to control code migration. The se-
curity policies are defined by the site administrators, following an intuitive and easy
approach. For each site, its administrator specifies what operations other sites are al-
lowed to perform.

The current setting allow us to focus on the security policies for resources. Using
lsdπ, we present a non-trivial, yet simple and low-cost, solution based on typing and
subtyping relations. The system checks that processes running at given sites respect
their security policies and that sites in a network interoperate correctly, without violat-
ing each other policies. Specifically, we prove subject reduction, define runtime errors,
and then prove type safety.
Further work. This work is a further step towards static control of code migration.
It smoothly extends (and simplifies) our previous work, which dealt only with a pre-
defined number of sites and which did not allow passing site identities [8].

We plan further developments along two main directions: (a) the definition of se-
curity policies at resource level and therefore be able to refine the interaction between
sites; (b) and the ability to adjust security policies dynamically.
Related work.Other approaches to resource security in distributed mobile calculi com-
prise DPI and KLAIM [4, 11]. See [2] for a general survey on concurrent mobile calcu-
lus, type systems, and security policies. DPI possesses an explicit objective construct to
move code—thego primitive. The control of migration is found along three aspects: a
keywordmig, a subtype relation, and the ability to communicate site names. If a pro-
cess “sees” themig keyword as part of the type of a site, then it may migrate code to
that site. The subtype relation, together with the capability to communicate site names,
allows a site to tailor the information (e.g.resource names, control keywords) that the
target site would be able to use. From a programming point of view, this approach does
not seem very attractive since security annotations are spread along the code and it is
difficult to understand what actions are really allowed to execute. It is not clear how to
implement type inference.

KLAIM uses a capability type system to control operations on tuple spaces. Each site
defines the actions that other sites can perform. There is a correspondence between the
capabilities and the calculus’s actions. For the migration primitive (eval) the type speci-
fies also the security restrictions that the migrating process should obey. The KLAIM ap-
proach is similar to ours in the sense that security policies are declared at site level, but
differs substantially when we consider the way policies are programmed and checked.
Notice that the KLAIM type system is far more complex than ours is, although it pro-
vides roughly the same guarantees. One main distinction concerns the place where the
security policies are defined: security policies in KLAIM talk about what operations a
site may perform on other sites, whereas in our framework each site talks about what
actions it allows others to perform on it. From the site administrator point of view this
looks more appropriate.

Moreover, our system is tailored to the particular aspects of lexical scoped settings.
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