
History-based access control for distributed processes

Francisco Martins1 and Vasco Vasconcelos2

1 Department of Mathematics, University of Azores, Portugal.
2 Department of Informatics, Faculty of Sciences, University of Lisbon, Portugal.

Abstract. This paper presents a type system to control the migration of code
between network nodes in a concurrent distributed framework, using the Dπ lan-
guage. We express resource access policies as types and enforce policies via a
type system. Types describe paths travelled by migrating code, enabling the con-
trol of history sensitive access to resources. Sites are logically organised in sub-
networks that share the same security policies, statically specified by a network
administrator. The type system guarantees that well-typed networks are exempt
from security policies violations at runtime.

1 Introduction

The spreading of small, powerful portable machines like PDAs, cellular phones, and
laptop computers, equipped with long lasting batteries and wireless communications, is
promoting the integration of a broad range of services and encouraging the sharing of
resources. Consequently, the protection of personal data and resources from being abu-
sively used is a central concern for the global network participants. This paper proposes
a discipline to control the security of resources in a mobile distributed environment.

Take, for example, a typical network architecture for an institution that exposes
some of their servers (e.g. SSH, HTTP, SMTP, and DNS) to an untrusted network, like
the Internet, as described in figure 1 (cf. [23]). The task of the network administrator
is to find the correct balance between hiding and revealing the institution’s services
to the outside world. Some institutions, however, need to give permission to untrusted
third parties, for example, to browse their web pages or to download information from
their data server, while at the same time need to prevent valuable assets from being
defrauded.

One common approach to tackle the problem is to separate the external untrusted
network from the institution’s network, using a firewall, and to split the inner network
into three major areas, offering different levels of security to their components: an in-
ternal network, protected by an extra firewall, that is not exposed to the outside world
at all; a DMZ—Demilitarised Zone—that houses servers which are visible to untrusted
clients (a semi-protected area); and an EDMZ—Extended Demilitarised Zone—hosting
internal servers that may be accessed from the DMZ, but not from the external network.

Clustering nodes that share the same security requirements (e.g. DMZ, EDMZ, and
users subnet) seems a natural method to define security policies for a network. We
propose a security model inspired on this notion of clusters, that we name security
groups, each listing the necessary security requirements. Then we use security groups
as building blocks to set up security policies for larger networks, exploiting the policies

internet
(untrusted)

External router

External firewall

Internal
router

Internal firewall

Users subnet
(trusted)

SQL DHCP

EDMZ

External network

Internal network

Authorized
SSH users

SSH

HTTP

SMTP

DNS

DMZ

Fig. 1. A two-firewall tiered network architecture.

already defined. Each group represents a kind of firewall that dictates the rules and
supervises the migration of code that crosses its border. We conceive a model where
sites may belong to more than one group and where groups form a hierarchical structure.

We choose Dπ [14, 15] as the underlying calculus and extend it with the notion of
security groups, an enriched view of the groups Cardelli, Ghelli, and Gordon introduced
for the ambient calculus [5–7], thus obtaining a flat computation model (that of Dπ),
coupled with a hierarchical organisation from the point of view of security groups,
promoting a layered specification of security. Our main motivation is to design a flexible
security policy description language, while at the same time, statically guarantee no
violation of user-declared security policies.

Sites form a network of computational shells where processes compete for memory,
CPU cycles, and other local resources. Communication is local; therefore, the interac-
tion between sites must be programmed explicitly via code migration.

The group’s security officer defines a set of rules enumerating what admissible mi-
gration paths are allowed to perform what actions. The migration path, path for short, is
the sequence of groups a piece of code has travelled through, until reaching its current
position. We classify actions as resource usage actions—the installRes and useRes
control attributes describe reading and writing from local channels; resource alloca-
tion actions—the createRes, createSite, and createGroup attributes enumerate local
channel, site, and group creation; code migration action is regulated through the tun-
ing of forward control attribute; and finally management actions—the inherit attribute
enables a group to inherit the policies specified for its parents.

In what follows we explain how to set up security policies using the example in
figure 1. As in most real life examples, we take a conservative approach to defining
security: all actions are denied unless otherwise stated. Our simple method for writing
security rules disables contradictory policies: granting and denying the same privilege.
Groups. The diagram below illustrates an interaction to obtain a valid IP address be-
tween a client named data from group SQL and a server named kass, belonging to
group DHCP. The client runs the process goto kass.askIP !〈reply@data〉, and the
server replies back running process goto data.reply!〈IP 〉.

data kass
SQL DHCPaskIP!

reply!

To establish the adequate policies for the network, allowing the code at site data and
at site kass to execute without infringing the security rules, group DHCP must allow
SQL’s code to use local resources (useRes policy) and vice-versa. For each group,
we can write down these policies using a simple notation: a pair of sets describing the
security policies for the group, and its parent groups.

SQL : ({useRes : DHCP}, -) DHCP : ({useRes : SQL}, -)

Subgroups. The notion of subgroups provides for a method to combine group policies.
Consider now an IP query from a client c1 in the Users internal network, as depicted in
the following diagram.

askIP!

reply!

c1
Users

... ...
kass

DHCP

EDMZ

So, group EDMZ must forward code from group Users and, furthermore, group DHCP
must allow group Users to use local resources. The types for EDMZ and DHCP become

EDMZ : ({forward : Users}, -) DHCP : ({useRes : Users}, {EDMZ})

Notice that group DHCP is now a subgroup of EDMZ (as specified in the second
component of the type for DHCP), and that permission to use local resources is only
specified at DHCP. The point is that each group specifies the policies for the sites that
are directly under its control. When a site is under the control of a subgroup, the parent
groups only concede the authority for code to cross their boundaries. The remaining
policies are “delegated” to the groups where the sites directly belong to, thus avoiding
the replication of policies at each group level.

Let us turn our attention to the response from site kass, goto c1.reply!〈IP 〉. Site
kass is a member of group DHCP, which, in turn, is a subgroup of EDMZ. So, kass
may be seen as a member of DHCP or as a member of EDMZ. Hence, group Users
may specify security policies addressed specifically at group DHCP or at group EDMZ.

Suppose that we want to express that group Users allows group EDMZ to install re-
sources, but that only code from group DHCP may use resources. We could set up
group Users policies as

Users : ({useRes : DHCP, installRes : EDMZ}, -)

In addition, we may want to be more specific and enable the installation of resources
only for group DHCP (thus denying code from sites belonging to group SQL). So, we
could write

Users : ({useRes : DHCP, installRes : DHCP}, -)

Policy inheritance. The inheritance of security policies helps in designing and main-
taining policies for subgroups. The inheritance is twofold: (a) explicit, via keyword
inherit, stating that a subgroup inherits the security policies of its direct parent groups;
(b) implicit, adopting the identity of a parent group. Defining security policies for dif-
ferent levels on the grouping hierarchy prevents the enumeration of a myriad of leaf
subgroups in the rules.
Migration paths. In addition to indicating a group that may perform some action over
the sites of a particular group, we may specify a path representing an acceptable se-
quence of groups that the code must pass through before entering the destination site.
The path is specified using a regular expression (figure 5).

Our last example addresses the granting of privileges when the code travels through
sites from distinct groups. Consider an intruder browsing web pages that contain data
sitting on some data server. We need to give rights to the intruder to view the web pages,
but prevent him from gaining access to the data server, either directly from the Internet
or via the web server. The network depicted below illustrates this situation

Internet

sqlReq!

sqlReq!
webSintruder

httpReq!

goto data.sqlReq!
data

SQL

...

EDMZHTTP

Suppose that the policies for groups HTTP, EDMZ, and SQL are

HTTP : ({useRes : Internet}, -) EDMZ : ({forward : HTTP}, -)

SQL : ({useRes : HTTP}, {EDMZ})

Processes goto webS.httpReq!〈�〉 and goto data.sqlReq!〈�〉 do not violate the se-
curity rules, whereas goto data.sqlReq!〈�〉 launched by the intruder breaks the security
rules at groups EDMZ (forwards code just from HTTP group) and SQL (only allows the
use of resources from HTTP). What about process goto webS.goto data.sqlReg!〈�〉?
A trusting relation must not be transitive: although group HTTP allows code from group
Internet to use its resources, and group SQL allows HTTP the same privileges, that does
not imply that SQL should allow code migrating from Internet to use its resources,
either directly or through a site in HTTP.

v ::= Values n ::= Names
a@s located channel a, b, c, x channels

| � basic value | r, s, t, y sites
| f, g, h groups

P, Q ::= Processes N, M ::= Networks
stop termination stop termination

| (νn : L@s) P restriction | (νn : L) N restriction
| P |Q composition | N |M composition
| goto s.P migration | s[P] site
| a!〈v〉 output
| a?(v) P input see figure 11 for the syntax of types L
| a?∗(v) P replication

Fig. 2. Syntax of Dπ.

The security policies set above for EDMZ and for SQL do not allow migration of
code from intruder to webS and then to data, because the path the code travels is HTTP
Internet, which is not allowed. However, it could be interesting to model a situation in
which this migration path is acceptable. Consider the subgroup SSHusers in Internet
accessing to the data server. The network administrator may permit that the sites in
group SSH may be used as proxies for sites in group SSHusers, and allow code from
and honest agent to migrate through SSH to use SQL’s resources. The types for SSH,
EDMZ, and SQL groups would then become

SSH : ({useRes : SSHusers}, -) EDMZ : ({forward : SSH SSHusers}, -)

SQL : ({useRes : SSH SSHusers}, {EDMZ})

Would the network administrator need to specify that all the code arriving through
group SSH is welcome to use SQL’s resources, it might set EDMZ and SQL policies as

EDMZ : ({forward : SSH ·?}, -) SQL : ({useRes : SSH ·?}, {EDMZ})

Other simple path patterns can be specified, like, for instance, code originated at
group SSH as, ·? SSH, or code that passes through group SSH as, ·? SSH ·?.
Outline. The next section briefly introduces the Dπ syntax and its operational seman-
tics. Section 3 introduces our approach to the checking of security policies and present
the notion of runtime errors (via a tagged version of Dπ). Section 4 is devoted to the
type assignment system and states the results we achieved. The last section presents the
related work and states our conclusions.

2 Dπ syntax and operational semantics

This section deals with the syntax and the operational semantics of Dπ, mainly taken
from Hennessy and Riely [15].
Syntax. The syntax of the calculus is defined in figure 2. The main difference w.r.t. the
original Dπ is the usage of groups, namely the new constructor to create groups. We

1. ((N |M) |M ′) ≡ (N | (M |M ′)) (M |N) ≡ (N |M) (N | stop) ≡ N
2. (νn : T) N |M ≡ (νn : T) (N |M) if n 6∈ fn(M)

(νn : T) (νm : T ′) N ≡ (νm : T ′) (νn : T) N if m not in T, and n not in T ′

(νn : L@s) s[P] ≡ s[(νn : L) P] if n 6= s
3. s[P] | s[Q] ≡ s[P |Q]
4. (νn : T) stop ≡ stop (νs : T) s[stop] ≡ stop

Fig. 3. Structural congruence.

s[a!〈b@r〉] | s[a?(x@y) P] → s[P{r/y}{b/x}] (COMC1)

s[a!〈�〉] | s[a?(�) P] → s[P] (COMC2)

s[a!〈b@r〉] | s[a?∗(x@y) P] → s[P{r/y}{b/x}] | s[a?∗(x@y) P] (COMR1)

s[a!〈�〉] | s[a?∗(�) P] → s[P] | s[a?∗(�) P] (COMR2)

s[goto r.P] → r[P] N → M
(νn : L@s) N → (νn : L@s) M

(MIG, RES)

N → N ′

N |M → N ′ |M
N ≡ N ′ N ′ → M ′ M ′ ≡ M

N → M
(PAR, STR)

Fig. 4. Reduction rules.

consider a monadic version of the calculus where only located names can be passed
around, since our main focus is the control of migration, not that of communication.

We briefly address the Dπ syntax; the interested reader should refer to [14, 15] for
motivations and details. The calculus presents two main syntactic categories: processes
and networks. At process level we find the usual asynchronous π-calculus constructs
[2, 16]; processes are built from the inactive process, stop, and from the asynchronous
output process, a!〈v〉, using three constructs: name restriction, (νn : T) P , parallel
composition, P |Q, and input, a?(v) P . We also include a form of replicated input,
a?∗(v) P . Moreover, Dπ contains an operator that sends a process P to a specific
location s: the goto s.P process.

Networks are assembled from the inaction network, stop, and from processes run-
ning at specific named locations called sites, s[P], using name restriction, (νn : T) N ,
and parallel composition, N |M .
Operational semantics. The binders of the calculus are the usual in π-calculi like lan-
guages: name n is bound in (νn : T) P and in (νn : T) N , whereas x and y are both
bound in a?(x@y) P . Networks are taken up to α-congruence in such a way that bound
names are different from free names and from each other.

Operational semantics is defined on top of a structural congruence relation, ≡, that
is the least congruence relation closed under the rules defined in figure 3. It follows
closely the structural congruence relation introduced for Dπ.

Reduction in figure 4 is mainly taken from Dπ, except for obvious adjustments to
incorporate groups.

3 Security policy

Writing security policies. A security policy (P) consists of a set of rules (π). Effect
rules (τ : S) describe the set of admissible paths in the group hierarchy that code must

P ::= Policies τ ::= Effects S ::= Paths
{π1 . . . πn} useRes output ε empty path

| installRes input | g group
π ::= Security rules | createRes ch. creation | · any group

τ : S effect rules | createSite site creation | SS concatenation
| forward: S code forward | createGroup group creation | S + S alternation
| inherit inherit policies | S? kleene star

Fig. 5. Syntax for security policies.

visit before being able to perform the action the policy protects. Rule forward governs
the migration of code. For code migration to succeed, there must be a path all along the
group hierarchy that authorises the forwarding of the code to the destination site. The
inherit allows a group to import the rules defined for its direct parents.

The effects, τ , correspond directly to the actions of the calculus: the input and out-
put actions are related with the installRes and useRes effects, respectively; channel,
site, and group creation are associated with createRes, createSite, and createGroup
effects, respectively.

A path pattern, S, is a regular expression. A group g stands for itself, the symbol ·
is a wild card that represents any group. Concatenation, alternation, and Kleene closure
possess the usual meaning.
Checking security policies. A typing Γ is a partial function of finite domain from
names to types. For the current section we outline that the type for sites (s : G) is the set
of groups that the site belongs to, and the type for groups (g : (P , G)) is a pair: security-
rules, parent-groups. We write dom(Γ) for the domain of Γ . When x 6∈ dom(Γ), we
write Γ, x : T for the type environment Γ ′ such that dom(Γ ′) = dom(Γ) ∪ {x},
Γ ′(x) = T and Γ ′(y) = Γ (y) for y 6= x. We use X̃ to denote a possibly empty

sequence of X’s. Similarly, r̃ : F and g̃ ∈ G denote r1 : F1, . . . , rn : Fn and g1 ∈
G1, . . . gn ∈ Gn, respectively.

Functions allows and canEnter, defined in figures 6 and 7, perform security check-
ing. Before outlining function allows, we give an overview of function matches defined
in [19]. A formula g̃ matches S means that a path g̃ fits in path pattern S. The rules
for most path constructs are straightforward; we present the non-standard ones: a group
matches itself or any group in its hierarchy.

Γ ` g matches g
Γ, g : (P , G) ` h matches f h ∈ G

Γ, g : (P , G) ` g matches f

A formula g allows f̃ : π (figure 6) says that group g allows code that travelled
through path f̃ to perform action π; path f̃ is matched against the path pattern asso-
ciated with policy π using function matches. We use A in the rules to denote a set of
effects τ . The createGroup effect receives special treatment, since the creation of a
group establishes a new node in the group hierarchy, and the groups above must accept
its new member. Since a group may identify itself as any of its parents, the creation of a
subgroup must collect the acceptance of the whole hierarchy. Forwarding code requires
that at least one branch in the hierarchy grants the forward policy to the path the code

Γ (g) = (P ∪ {τ : S}, G)

Γ ` ef matches S
τ 6= createGroup

Γ ` g allows ef : τ

Γ (g) = (P ∪ {createGroup: S}, G)

Γ ` ef matches S

∀h ∈ G Γ ` h allows ef : {createGroup}

Γ ` g allows ef : {createGroup}

Γ (g) = (P ∪ {forward : S}, ∅)

Γ ` ef matches S

Γ ` g allows ef : {forward}

Γ (g) = (P ∪ {forward : S}, {h} ∪ G)

Γ ` ef matches S Γ ` h allows ef : {forward}

Γ ` g allows ef : {forward}

Γ (g) = ({inherit} ∪ P, {h} ∪ G)

Γ ` h allows ef : A

Γ ` g allows ef : A

∀g ∈ G, ∀f̃ ∈ F , ∀π ∈ A, Γ ` g allows ef : π

Γ ` G allows eF : A

Γ, s : G, r̃ : F ` G allows eF : A

Γ, s : G, r̃ : F ` s allows er : A Γ ` s allows s : A

Fig. 6. allows relation.

Γ (f) = (P, ∅)

Γ ` eg canEnter f

Γ (f) = (P, {h} ∪ G)
Γ ` h allows eg : forward

Γ ` eg canEnter f Γ ` s canEnter s

∀g̃ ∈ G, ∀f ∈ F, Γ ` eg canEnter f

Γ ` eG canEnter F

Γ, s̃ : G, r : F ` eG canEnter H

Γ, s̃ : G, r : F ` es canEnter r

Fig. 7. canEnter relation.

travelled. When the inherit policy keyword is set for a group, the security policies for
the direct parent groups are considered as a part of the security specification for the
group.

Function canEnter (figure 7) checks whether code that travels through a given path
has permission to enter a target group. A formula g̃ canEnter f means that group f

accepts code that has travelled through path g̃. This privilege is controlled using the
forward policy. Code that went all along path g̃ is able to enter the frontier of group f ,
if there exists a path through f ’s hierarchy granting, at each group in the path (except
for the target group), the forward right to g̃.

Tagged language. To precise the notion of runtime errors we need to make explicit in
the syntax the path the code travelled and the group policies (cf. [15]). Therefore, we
present a tagged version for the language introduced in figure 2 and the corresponding
tagged semantics.

Tagged syntax. Figure 8 (syntax) summarises the syntactic changes: (a) we append to
the site constructor the sequence of sites the code has visited and the set of assump-
tions needed to check security policies for the processes it runs; (b) we add to name
restriction the sequence of sites followed by the code before creating the name, since,
by scope extrusion, a name may appear at network level and we need this information
to formalise runtime errors. All the remaining syntax is left unchanged.

Syntax (all rules from figure 2, replacing site and restriction by the following rules)

s[P]er
Γ (νet n : T) N

Structural congruence (group 1. from figure 3, plus the following rules)

2. (νet n : L@s) s[P]et
Γ un : L@s ≡T s[(νn : L) P]et

Γ if n 6∈ dom(Γ) ∪ {s}

3. s[P]et
Γ | s[Q]et

Γ ≡T s[P |Q]et
Γ

Fig. 8. The tagged language—syntax and structural congruence.

s[a!〈b@r〉]
et
Γ,r : G | s[a?(x@y) P]eu

∆ 7→ s[P{r/y}{b/x}]eu
∆u r : G (T-COMC1)

s[a!〈�〉]
et
Γ | s[a?(�) P]eu

∆ 7→ s[P]eu
∆ (T-COMC2)

s[a!〈b@r〉]
et
Γ,r : G | s[a?∗(x@y) P]eu

∆ 7→ s[P{r/y}{b/x}]eu
∆ u r : G | s[a?∗(x@y) P]eu

∆

(T-COMR1)

s[a!〈�〉]
et
Γ | s[a?∗(�) P]eu

∆ 7→ s[P]eu
∆ | s[a?∗(�) P]eu

∆ (T-COMR2)

s[goto r.P]
et
Γ 7→ r[P]s

et
Γ

N 7→ M
(νet n : T) N 7→ (νet n : T) M

(T-MIG, T-RES)

(plus rules PAR, and STR from figure 4)

Fig. 9. The tagged language—reduction.

Tagged structural congruence. Name extrusion (rule 2, figure 8) records the code
journey leading to name creation, whereas restricting it to a site is only possible when
the code running at the site followed the same migration path as that of the name cre-
ation. Notice that the set of assumptions at the left-hand side of the congruence relation
enlarges with the name declared at network level, announcing the creation of the name.
The meet operator, u , (cf. [14, 15]), used to combine the new name with that in type
assumptions is defined in [19]. Merging sites (rule 3, figure 8) is only viable when the
tagged information agree: it is not possible to merge sites that execute code travelling
through different locations or that are governed by distinct security policies. The re-
maining structural congruence rules reflect the syntactic adjustments and are omitted.
Tagged reduction (figure 9). The main differences w.r.t. untagged reduction (figure 4)
concern communication and code migration. Communication may occur under dissimi-
lar views of the security policies of a site, in particular, the input process may not use or
even have knowledge of the value it is going to receive (except for its type). Therefore,
communication updates the typing assumptions of the receiving process with informa-
tion from the emitting process. Rule T-COMC1 updates the resulting process with type
information for the communicated site r. When site r is not mentioned in process P , the
type information is just appended to typing ∆, otherwise we compute the least common
supertype of the type figuring in ∆ and the one communicated. The subject reduction
theorem (page 14) guarantees that for well-typed processes the meet operation is always
defined. The remaining rules are either similar to the above (T-COMR1) or close to their
untagged version (T-COMC2 and T-COMR2).

As for code migration, rule T-MIG, we append the name of the source site to the
migration path. This information is fundamental to reason about security. We check the

R-OUT s[a!〈v〉]er
Γ

err
7−→ if Γ 6` s allows er : useRes

R-INP s[a?(v) P]er
Γ

err
7−→ if Γ 6` s allows er : installRes

R-MIG s[goto t.P]er
Γ

err
7−→ if Γ 6` ser canEnter t

R-RES1 s[(νa : L) P]er
Γ

err
7−→ if Γ 6` s allows er : createRes

R-RES2 (νer a : L@s) N
err
7−→ if Γ 6` s allows er : createRes

Fig. 10. Runtime errors.

security policies considering the sites that migration code visits because this informa-
tion is important to express the trust between the destination group and the rest of the
network. Rule T-RES results from the syntax update.
Runtime errors. The unary relation,

err
7−→, defined in figure 10, identifies processes that

break some security policy during reduction.
The output (input) process fails, R-OUT (R-INP), if the site that sent the code, r, has

no permission to use (install) resources. We omit the rule for replicated input, since it is
similar to rule R-INP. For code migration, rule R-MIG states that a goto process incurs
in a runtime error if it cannot enter the border of the groups where the target site resides.
Notice the role of typing Γ—a placeholder for security policies—, and the need to talk
about the site where the code is, s, the sequence of sites visited by the code, r̃, and
the site where the code is migrating to, t. Rule R-RES1 says that the channel creation
operation fails if the current site does not allow the site that sent the code to create
channels. Rule R-RES2 is similar.

4 Typing system

In this section we present two type and effect systems (for the tagged and for the un-
tagged languages) that check whether networks respect the security policies defined for
groups. The type systems are based on a subtyping relation à la Sangiorgi and Pierce
[21], and are parametric in two functions that are used to check the security policies,
namely, the allows and the canEnter functions.
Types. The syntax for types is depicted in figure 11. We assign types to channels, to
sites, and to groups. Types, T , may be local or global: local types, L, are used when
creating names at a given site; global (or located types), L@s, are assigned to names
when declared at network level.

Name types, L, aggregate channel types, C, that trace the type of the values that are
communicated along the channel, as well as its usage (input, output, or both); site types,
G, that simply record the set of groups the site belongs to; and group types, (P , G),
which is a central notion in our work: it is at group level that we record information
for security, namely, (a) the set of security rules, P , that govern the interaction with the
network, and (b) the set, G, of the parent groups of the group.

Channels can carry other channels, as well as basic values, as described by value
types, V . The type for channel values assumes the form C@G, where C is the type of
the channels that can be carried, and G is the set of groups hosting the communicated
channels. The subtype relation characterising channel tags I is introduced in figure 12.

T ::= Types C ::= Local channel types V ::= Value types

L local type 〈V 〉I local channel C@G channel
| L@s global type | unit basic type

L ::= Name types I ::= Tags G set of groups
C local channel r input

| G site type | w output
| (P, G) group type | rw input/output

Fig. 11. Syntax of types.

unit <: unit
C1 <: C2 G1 ⊆ G2

C1@G1 <: C2@G2

(Value subtyping)

i = r, rw V1 <: V2

〈V1〉
i <: 〈V2〉

r

i = w, rw V2 <: V1

〈V1〉
i <: 〈V2〉

w

V1 <: V2 V2 <: V1

〈V1〉
rw <: 〈V2〉

rw

(Local channel subtyping)

C1 <: C2

C1@s <: C2@s
(Global channel subtyping)

Fig. 12. Subtyping relation.

Subtyping. The subtyping relation, <:, is defined as the least preorder relation on types
that satisfies the rules in figure 12 where channels are tagged according to their usage:
input (r), output (w), and input/output (rw). We extend the subtyping relation to deal
with types involving groups. The original intuitions remain unchanged, namely that
the subtyping relation is covariant for inputs, contravariant for outputs, and invariant if
the channels are used both for input and for output purposes. The subtyping rules are
straightforward. Notice the set inclusion to handle groups in value subtyping and the
last subtyping rule that relates located channels.
Typing the untagged language. The type system collects the effects of the actions per-
formed by processes. For instance, process a!〈b@r〉 running at site s has effect useRes.
Then, following to a goto action we check whether the path travelled by the code has the
right privileges to perform the intended action, in the present case an output. At network
level there is nothing to be checked, since there is no computation taking place. Also,
we do not check code running at its host site—code that is not in the continuation part
of a goto process—, since we assume that there is no need to grant specific privileges
in such circumstances.

The type system, described in figures 13–15, includes three kinds of judgements:
(a) judgement Γ ` env asserts that Γ is a well-formed environment; (b) judgement
Γ `st̃ P : A means that process P is running at site s has travelled through the sequence
of sites t̃, has the effects enumerated in set of actions A, and is well typed under typing
assumptions Γ ; and (c) judgement Γ ` N denotes that network N is well typed under
typing assumptions Γ .

Well-formed environment rules, figure 13, guarantee that group structures are not
circular. Rule E-GROUP ensures that when we enlarge a typing with a new group defini-
tion, its parent groups are already in the typing. The remaining rules are simple.

E-UNIT � : unit ` env E-CHANNEL
Γ ` env

Γ, a : C@s ` env

E-SITE
Γ ` env

Γ, s : G ` env
E-GROUP

Γ ` env G ⊆ dom(Γ)

Γ, g : (P, G) ` env

Fig. 13. Well-formed environments.

P-OUTB
Γ ` env Γ (a) <: 〈unit〉w@s

Γ `set a!〈�〉 : {useRes}
P-OUTC

Γ ` env Γ (a) <: 〈C@G〉w@s
Γ (r) = G Γ (b) = C@r

Γ `set a!〈b@r〉 : {useRes}

P-INPB
Γ `set P : A Γ (a) <: 〈unit〉r@s

Γ `set a?(�) P : A ∪ {installRes}

P-INPC
Γ, x : C@y, y : G `set P : A Γ (a) <: 〈C@G〉r@s y not in Γ

Γ `set a?(x@y) P : A ∪ {installRes}

P-INPR
Γ `et a?(v) P : A

Γ `et a?∗(v) P : A
P-PAR

Γ `et P : A1 Γ `et Q : A2

Γ `et P |Q : A1 ∪ A2

P-RESS
Γ, r : G@s `set P : A r not in Γ

Γ `set (νr : G) P : A ∪ {createSite}

P-RESC
Γ, a : C@s `set P : A

Γ `set (νa : C) P : A ∪ {createRes}

P-RESG
Γ, g : (P, G)@s `set P : A g not in Γ

Γ `set (νg : (P,G)) P : A ∪ {createGroup}
P-NIL

Γ ` env
Γ `et stop : ∅

P-MIG
Γ `ret P : A Γ ` r allows et : A Γ ` et canEnter r

Γ `et goto r.P : ∅

Fig. 14. Typing processes.

As for processes (figure 14), rule P-OUTB enforces that typing Γ is well formed, and
that channel a is a write or a read-write channel located at the site where the process is
running and is capable of carrying unit values. Rule P-OUTC types an output process that
carries another channel, rather than the unit value. The difference w.r.t P-OUTB regards
the type for channel a: it must carry channels of the type of b and must be located at
the groups of site r. To type an input process, a?(x@y) P , channel a must be a read
or a read-write channel. The continuation process, P , must be well typed in a typing
augmented with x and y. Notice that channel x is located at y and that y is defined
as a site member of the groups that channel a can carry. Hence, we guarantee that
the privileges for the actions involving x and y are correctly checked, since we verify
policies against all groups in G. The subtyping rule is covariant for inputs, which means
that, if the type of channel a is a subtype of 〈C@G〉r@s, then a carries channels located at
a subset of G. Finally, the effect of the input action—installRes—is appended to the set
of actions. Rules P-INPB and P-INPR follow a pattern similar to the one just described.

The parallel composition of processes, P |Q, combines the set of actions gathered
when typing the individual processes. We split name restriction over three rules, P-RESS,
P-RESC, and P-RESG, since there is a specific effect associated to each creation action.

It is at code migration, goto r.P , that all the security checking takes place. When
we reach a goto process we have all the information necessary to check security polices,

N-SITE
Γ `s P : A

Γ ` s[P]
N-RES

Γ, n : L@s ` N n not in Γ

Γ ` (νn : (L, @)s) N

N-PAR
Γ ` N Γ ` M

Γ ` N |M
N-NIL

Γ ` env
Γ ` stop

Fig. 15. Typing networks.

T-SITE

∆ `set P : A ∆ ` s allows et : A

Γ <: ∆ ∆ ` et canEnter s

Γ s[P]et
∆

T-RESC

Γ, a : C@s N
Γ ` s allows et : createRes

Γ (νet a : C@s) N

T-RESS

Γ, s : G@s N
Γ ` s allows et : createSite

Γ (νet s : G) N
T-RESG

Γ, g : (P, G)@s N g not in Γ

Γ ` s allows et : createGroup
Γ (νet g : (P, G)) N

(plus all rules in figures 14, 15, except N-SITE, and N-RES)

Fig. 16. The tagged language—typing networks.

namely, we know the sequence of sites visited by code (annotated under the turnstile),
the target site (indicated in the syntax of the goto process), as well as the actions per-
formed by process P (the set A in the typing for P) that need to be checked in the typing.
Therefore, the typing of a goto process checks if the continuation process is well typed
and ensures that the target site allows code that travels through that sequence of sites to
perform the actions of the continuation process. There is no effect associated with code
migration, since the actions that P performs are checked at this level, and so, there is
no point in including the actions executed by P to be checked again at outermost levels.

Figure 15 describes network typing. Security policies are not checked at network
level, since no computation takes place at this level. Therefore, the only interesting fact
to stress (refer to rule N-SITE) is that when code is installed at a certain site, the actions
that are not the continuation of a goto process are not checked. Indeed, since functions
allows and canEnter are reflexive, there is no point in checking policies at this level.

The type system we present preserves typings during reduction.

Theorem 1 (Subject Reduction). If Γ ` N and N → M , then Γ ` M .

Typing the tagged language. The changes imposed on the type system by tagging
are described in figure 16. The typing rules for processes are left unchanged, but at
network level we propose substantially different rules. Rule T-SITE checks, among other
things, that the tagged typing assumptions are enough to type the process. Moreover, the
conclusion’s typing environment, Γ , is a relaxed version of the one used for tagging, ∆.
Hence, it is possible to consider the minimum security requirements to type a process,
and then enlarge the set of security properties at network level.

Notice that we now verify security policies in the rule, since the inclusion of the path
travelled by the code (t̃) represents an implicit goto process. To understand the need to
check security policies at site level, consider, for instance, sequent ∆ `

set
P : A. It is

always possible to run a process at its host site: Γ s[P]s

∆, for Γ <: ∆. But if we
want to indicate that the code migrated from a site, say t, s[P]t∆, then it is only possible
if site s allows t to execute actions in set A and t is able to enter s border.

We check also the declaration of new names, since we are again in presence of an
implicit goto. From the network declaration (νet

n : L@s) N we infer that there was
a code migration all along the sequence of sites t̃ to site s, and then afterwards the
creation of n took place. The remaining typing rules result from syntax modifications.

Theorem 2 (Tagged subject reduction). If Γ N and N 7→ M , then Γ M .

Type safety. The tagged and untagged reduction relations are closely related. We define
a tag function tagΓ (N) in [19] that takes an untagged network N and yields the set of
tagged networks obtained from it using Γ .

The following results ensure that types are preserved both by the tagging function
and by the tagged reduction.

Theorem 3 (Tagging preserves types). If Γ ` N , and M ∈ tagΓ (N), then Γ M .

Theorem 4 (Operational correspondence between tagged and untagged languagues).

(i) If N → N ′, then ∃M ∈ tagΓ (N) s.t. M 7→ M ′ ∈ tagΓ (N ′).
(ii) If M 7→ M ′, then ∃N ∈ tagΓ (N), N ′ ∈ tagΓ (M ′) s.t. N → N ′.

The type safety result states that well-typed networks do not incur in runtime errors.

Theorem 5 (Type safety). If Γ M , then M
err
X7−→.

5 Conclusions and related work

Summary. We present an approach to express and control history-based access to re-
sources using types. We use Dπ as the underlying calculus and, on top of it, define a
hierarchical structure of security groups. The security model we propose is based on
the notion of security group that delimits a region of the network with the same security
requirements. Security groups may be understood as a firewall that dictates and super-
vises the sites under its control. We use a type system as the security mechanism to
enforce that networks respect the security policies defined by groups and claim a type
safety result.

Ongoing work comprise the refinement of the type system to enforce a fine grained
control of resources’ security and the study of how to change policies dynamically.
Related work. Refer to [3] for a general survey on concurrent mobile calculi, type
systems, and security policies. As far as we known, our security model is the first to
mix group policies, to record history-based access to resources, and to use a group
hierarchy for helping the writing of security rules and the reusing of existent ones.

Cardelli, Ghelli, and Gordon introduced the notion of groups for the Ambient cal-
culus [5–7] to control the movement and the opening of ambients. They use groups to
combine ambients in clusters, but specify the security properties for each ambient re-
gardless the group the ambient belongs to. Instead, we use groups to specify security
policies shared by the sites that compose each group.

Lhoussaine and Sassone [17] use dependent types as an alternative to groups. The
type system is far more complex and the calculus does not facilitates the writing of
policies.

The work on Dπ has proposed advanced type systems [14, 15] to control resource
access. The control of policies is based on a subtype relation that permits the delivery of
different types of the same channel to distinguished parties. Code mobility is controlled
with the mig keyword. If a process “sees” the mig keyword as part of the type of a site,
then it may migrate code to that site. The subtype relation, together with the capability to
communicate site names, allows for a site to tailor the information (e.g. resource names,
control keywords) that the target site is able to use. This approach spreads security
annotations along the code and it makes difficult to understand what actions are really
allowed to execute.

Martins and Ravara [18] presented a type system to control migration in lsdπ [22]
with no site creation. The paper discusses an earlier stage of development of the current
work, where there is no notion of groups, nor history-based access control to resources.
The works of Abadi and Fournet [1] and of Edjlali, Anurag, and Vipin [11] present a
practical application of history based access control to resources. Both works are deeply
committed with the frameworks they select to make their security experiments, namely,
the Java language, and by this reason, are difficult to compare to the current work.
Chothia and Stark [8] present a notion of local areas that resemble our group hierarchy,
but they just use local areas to ensure that channels are used in the appropriate domain.

The decentralised label model of Myers and Liskov [20] use the notions of labels
and principals to control information flow. These are related with our idea of groups and
policies. Labels, assigned to variables, define the information flow policy: the sequence
of principals that can read information for each owner. Principals may act for other
principals, thus forming a hierarchy similar to our group hierarchy. However, we assign
policies to groups and manage other policies besides the read policy. Bugliesi, Colazzo
and Crafa [4] also work with groups to control information flow for the π-calculus.
Channel types record the information carried by channels, as well as the path the chan-
nel travels. We use a similar mechanism to keep track of code mobility, but since we
control code migration instead of information flow, the assignment of migration paths
is to mobile threads rather than to channels.

Finally, KLAIM [9, 10, 12, 13] uses a capability type system to control operations
on tuple spaces. The KLAIM approach uses a notion of security policies, which are
declared at site level, but differs substantially from our approach in what concerns how
policies are programmed and checked. One main distinction is the place where the
security policies are defined: security policies in KLAIM talk about what operations a
site may perform on other sites, whereas in our framework each security group talks
about what actions it allows others to perform on it. From the administrator’s point of
view this looks more adequate. Recent type systems proposed for µKLAIM tackle the
compilation of open systems, using a kind of partial compilation mechanism that marks
parts of the processes that cannot be checked statically to be analysed at runtime.

Acknowledgements. The authors would like to acknowledge the financial support of
the EU Global Computing project Mikado, and thank Matthew Hennessey and António
Ravara for fruitful discussions. The first author would like to thank Neva Slani for the
innumerous suggestions and comments given on this work. We also wish to acknowl-
edge the hospitality of the School of Cognitive and Computing Sciences, University of
Sussex, during the academic year of 2002/2003.

References

1. M. Abadi and C. Fournet. Access control based on execution history. In Proceedings of
NDSSS’03, pages 107–121, 2003.

2. G. Boudol. Asynchrony and the π-calculus. Rapport de Recherche 1702, INRIA Sophia-
Antipolis, 1992.

3. G. Boudol, I. Castellani, F. Germain, and M. Lacoste. Models of distribution and mobility:
State of the art. Mikado Deliverable D1.1.1, 2002.

4. M. Bugliesi, D. Colazzo, and S. Crafa. Type based discretionary access control. In Proceed-
ings of CONCUR’04, volume 3170 of LNCS, pages 225–239. Springer-Verlag, 2004.

5. L. Cardelli, G. Ghelli, and A. Gordon. Mobility types for mobile ambients. In Proceedings
of ICALP’99, volume 1644 of LNCS, pages 230–239. Springer-Verlag, 1999.

6. L. Cardelli, G. Ghelli, and A. Gordon. Ambient groups and mobility types. In Proceedings
of TCS’00, volume 1872 of LNCS, pages 333–347. Springer-Verlag, 2000.

7. L. Cardelli and A. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–
213, 2000.

8. T. Chothia and I. Stark. A distributed pi-calculus with local areas of communication. In
ENTCS, volume 41.

9. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: a Kernel Language for Agents Interaction
and mobility. IEEE Trans. in Software Engineering, 24(5):315–330, 1998.

10. R. De Nicola, G. Ferrari, R. Pugliese, and B. Veneri. Types for access control. Theoretical
Computer Science, 240(1):215–254, 2000.

11. G. Edjlali, A. Anurag, and C. Vipin. History-based access-control for mobile code. In
Proceedings of CCS’98.

12. D. Gorla and R. Pugliese. Resource access and mobility control with dynamic privileges
acquisition. In Proceedings of ICALP’03, volume 2719 of LNCS, pages 119–132. Springer-
Verlag, 2003.

13. D. Gorla and R. Pugliese. Controlling data movement in global computing applications. In
Proceedings of SAC’04. ACM Press, 2004.

14. M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory of access and mobility
control in distributed systems. Theoretical Computer Science, 2003.

15. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Journal of
Information and Computation, 173:82–120, 2002.

16. K. Honda and M. Tokoro. An object calculus for asynchronous communication. In Proceed-
ings of ECOOP’91, volume 512 of LNCS, pages 133–147. Springer-Verlag, 1991.

17. C. Lhoussaine and V. Sassone. A dependently typed ambient calculus. In Proceedings of
ESOP’03, LNCS. Springer-Verlag, 2003.

18. F. Martins and A. Ravara. Typing migration control in lsdπ. In Andrei Sabelfield, editor,
Proceedings of FCS’04. TUCS, 2004.

19. F. Martins and V. Vasconcelos. Controlling security policies in a distributed environment.
DI/FCUL TR 04–01, 2004.

20. A. Myers and B. Liskov. Protecting privacy using the decentralized label model. ACM
Transactions on Software Engineering and Methodology, 9(4):410–442, 2000.

21. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical
Structures in Computer Science, 6(5):409–454, 1996.

22. A. Ravara, A. Matos, V. Vasconcelos, and L. Lopes. Lexically scoping distribution: what you
see is what you get. In FGC: Foundations of Global Computing, volume 85(1) of ENTCS.

23. E. Zwicky, S. Cooper, and D. Chapman. Building Internet Firewalls, Second Edition. OReilly
& Associates, 2000.

