Liliana Salvador
| sal vador @cc. up. pt

Miko by Example

Francisco Martins

frartins@li . fc.ul.pt

University of Azores

Joint work with:

Luis Lopes
| bl opes@cc. up. pt

Vasco Vasconcelos

vv@li . fc.ul.pt

Miko by Example —p. 1

Outline

* Miko’s programming style
°© Membranes are programmed separately from contents
© Peer-to-peer communication

* The language
° Programming membranes and contents

* Examples
o Establishing a session between a client and a server
°© Membrane local state: counting active sessions
° A mathematical server

|
Miko by Example — p. 2

Miko programming style

* Membranes implement the communication protocol
between domains

° (membrane to membrane communication)

domain a domain b

Contents Contents

Membrane Membrane

Miko by Example — p. 3

Miko programming style

* Membranes implement the communication protocol
between domains

° (membrane to membrane communication)

* Contents interacts with the domain’s membrane
© (contents to membrane communication)

domain a domain b

Contents Contents

i _¢_

Membrane Membrane

|
Miko by Example — p. 3

Miko programming style

* Membranes implement the communication protocol
between domains

° (membrane to membrane communication)

* Contents interacts with the domain’s membrane
© (contents to membrane communication)

* Peer-to-Peer communication

domain a domain b

Contents Contents

Membrane Membrane

Miko by Example — p. 3

Programming membranes

* Programmed in a separated file (from the contents)

Menbr ane {

|
Miko by Example —p. 4

Programming membranes

* Programmed in a separated file (from the contents)
* Import domain interfaces/share resources

Menbr ane {
| mport aq,...,a,
Sharecq,...,c,

|
Miko by Example —p. 4

Programming membranes

* Programmed in a separated file (from the contents)
* Import domain interfaces/share resources
* Offer a set o methods as the domain interface

Menbr ane {
| mport aq,...,a,
Sharecq,...,c,
{

method1 (fl) — 5

method,,(z,) = S,
}

|
Miko by Example —p. 4

Programming membranes

* Programmed in a separated file (from the contents)
* Import domain interfaces/share resources

* Offer a set o methods as the domain interface

* Contain a computation shell to hold a local state

Menbr ane {
| mport aq,...,a,
Sharecq,...,c,
{

methodl(:}él) — 5
method,,(z,) = S,

}
S

|
Miko by Example —p. 4

Programming contents

* Select methods at the domain’s membrane

Contents {

|
Miko by Example —p. 5

Programming contents

* Select methods at the domain’s membrane
* Import domain interfaces/share resources

Contents {
| nport aq,...,a,
Sharecy,...,c,

|
Miko by Example —p. 5

Programming contents

* Select methods at the domain’s membrane
* Import domain interfaces/share resources
* |s the computational shell of the domain

Contents {
| nport aq,...,a,
Sharecq,...,c,
P

|
Miko by Example —p. 5

A client-server session manager

* Implements the concept of a session.

* Server's membrane

© provides a connect and a disconnect method as
network interface

* Client's membrane
© provides a connect, an enter, and a disconnect method.

client server
connect

sessioniD
<

quit

>

|
Miko by Example —p. 6

Server’'s membrane implementation

Menbr ane {
{
connect (client, replyTo) =
Nnew sessionlD
out [client, enter [() replyTo ! [sessionID]]] |
I N
sessionID ? {
quit () = inaction
}
]

disconnect (sessionID) =
| N [sessionID ! quit []]

}
| nacti on

|
Miko by Example —p. 7

Client’'s membrane implementation

Menbr ane {
{

connect (server, replyTo) =
out [server, connect [myDomain, replyTo]]

enter (x) =

I N [x[]

disconnect (server, sessionlD) =
out [server, quit [sessionID]]

}
| nacti on

Miko by Example —p. 8

Client-server communication

Cont ent s {
| nport S1

New connection
myDomain ! connect [S1, connection | |
connection ? (sessionlD) myDomain ! disconnect [sessionID]

}

|
Miko by Example —p. 9

Client-server communication

Cont ent s {
| nport S1

- - NeW connection
- - myDomain ! connect [S1, connection | |
- - connection ? (sessionlD) myDomain ! disconnect [sessionID]

| et

sessionID = myDomain ! connect [S1]
| N

myDomain ! disconnect [sessionID]

|
Miko by Example —p. 9

Controlling the number of clients

Menbr ane {
new myController
{
connect (client, replyTo) =
myController ! connect [client, replyTo]
disconnect (sessioniID) =
myController ! disconnect [sessionID]

Miko by Example — p. 10

Controlling the number of clients

Menbr ane {
new myController
{...}
def Controller (counter, max) =
myController ? {
connect (client, replyTo) =
| f counter < max
t hen ... | Controller [counter + 1, max]
el se Controller [counter, max]
disconnect (targetDomain, process) =
... | Controller [counter-1, max]
b
I N
Controller [0, 5]

|
Miko by Example — p. 10

A Math server

* Server's membrane
© provides: connect, disconnect, eval, and replyResult

* Client's membrane
© provides: connect, enter, disconnect, and eval

client server
connect

sessioniD
<

eval

result

<

quit

>

|
Miko by Example — p. 11

A Math server membrane

Menbr ane {
{

connect (client, replyTo) =
myController ! connect [client, replyTo]

disconnect (sessionlD) =
myController ! disconnect [sessionID]

eval (x) =

I N [x[]

replyResult (client, x) =
out [client, enter [X]]

Miko by Example — p. 12

A Math server membrane

connect (server, replyTo) =...
I N
def
Session (self, client) =
self ? {
add (n, m, replyTo) =
myDomain ! replyResult [client, () replyTo ! [n + m]] |
Session [self, client]
neg (n, replyTo) =
myDomain ! replyResult [client, () replyTo ! [0 - n]] |
Session [self, client]
disconnect () =
inaction

}

| N Session [sessionID, client]

|
Miko by Example — p. 12

A Math client membrane

Menbr ane {
{

connect (server, replyTo) =
out [server, connect [myDomain, replyTo]]

enter (X) =

I N [x[]

disconnect (server, sessionlD) =
out [server, quit [sessionID]]

eval (server, x) =
out [server, eval [X]]

}
| nacti on

|
Miko by Example — p. 13

Interaction with a math server

Cont ent s {
| nport S1

| et
sessionID = myDomain ! connect [S1]
| N
Nnewresult
myDomain ! eval [() sessionID ! add [3, 4, result]] |
result ? {
val (X) = myDomain ! eval [() sessionID ! neg [X, result]] |
result ? {
val (x) =1 0 ! printi [X] |
myDomain ! disconnect [sessionID]

}

|
Miko by Example — p. 14

Future work

* Add a notion of private and public interface
* Finish the compiler

* Change the virtual machine to use the IMC framework

|
Miko by Example — p. 15

	Outline
	Miko programming style
	Miko programming style
	Miko programming style

	Programming membranes
	Programming membranes
	Programming membranes
	Programming membranes

	Programming contents
	Programming contents
	Programming contents

	A client-server session manager
	Server's membrane implementation
	Client's membrane implementation
	Client-server communication
	Client-server communication

	Controlling the number of clients
	Controlling the number of clients

	A Math server
	A Math server membrane
	A Math server membrane

	A Math client membrane
	Interaction with a math server
	Future work

