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Abstract

This paper describes a proposal for typing the behavior of objects in component
models. Most component models, CORBA in particular, do not offer any support for
expressing behavioral properties of objects beyond the “static” information provided
by IDLs. We build on the works by Honda et al. [6] and Gay and Hole [5] to show
how session types can be effectively used for describing protocols, extending the
information currently provided by object interfaces. We show how session types
not only allow high level specifications of complex object interactions, but also
allow the definition of powerful interoperability tests at the protocol level, namely
compatibility and substitutability of objects

1 Introduction

Component-Based Software Development (CBSD) is gaining recognition as
the key technology for the construction of high-quality, evolvable, large soft-
ware systems, developed in timely and affordable manners. CBSD advocates
the development and usage of plug-and-play reusable software, with the goal
of reducing developing costs and efforts, while improving the flexibility and
reliability of the final application due to the (re)use of software components
already tested and validated.

In CBSD, components are prefabricated pieces, perhaps developed at dif-
ferent times, by different people, and possibly with different uses in mind. The
development effort now becomes one of gradual discovery about the compo-
nents, their capabilities, their internal assumptions, and the incompatibilities
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that arise when they are used in concert. Therefore, the notions of substi-
tutability and compatibility of software components play a critical role in
CBSD, since we need to be able to check whether a given component can suc-
cessfully replace another in a particular application, or whether the behavior
of two components is compatible for them to interoperate.

In general, components are described by means of their interfaces, which
define their functionality and capabilities independently from any particular
implementation. Component interfaces currently provide this information in
terms of the signature of the services offered by the component, and com-
mercial object and component platforms (such as CORBA, DCOM, or EJB)
provide the basic infrastructure for component interoperability based on them.
This allows to sort out most of the “plumbing” issues when putting compo-
nents together to build applications. However, all parties are starting to recog-
nise that this kind of (signature) interoperability is not sufficient for ensuring
the correct development of component-based applications in open systems [14].

Traditional approaches to overcome this limitation try to add semantic
information to interfaces, using different notations (pre/post conditions, tem-
poral logic, Petri nets, refinement calculus, etc.), and are also concerned about
compatibility and substitutability of components (see [8] for a comprehen-
sive survey on these proposals). However, these proposals share a common
drawback: the (computational) complexity of proving some of the behavioral
properties of components and applications based on their full semantical de-
scriptions hinders their practical utility.

Apart from signatures and behavioral semantics, another possibility is to
concentrate just on the components interactions with other components, defin-
ing their service access protocols, and the way they use other components’
services. This approach provides more than just signature information, it
also allows the definition of compatibility and substitutability checks among
components, and at a lower computational cost than other semantic tests.

Some authors have dealt with component interoperability at this level
[3,7,13]—usually called the protocol level—, and have shown its benefits. How-
ever, the existing approaches, when decidable, still present some limitations:

• First, the description of the components’ observable behavior is not modu-
lar: each component is assigned a single protocol description, which defines
all its interactions with the rest of the components in the system. This
mixes up all interactions, and usually forces the introduction of irrelevant
details into the protocol specification, e.g. the interleaving among unrelated
interactions.

• Second, the computational complexity of most of the tests is still very high,
due in part to the fact of having to check full protocols. Typical (pairwise)
component interactions are very simple, and this should reflect in simpler
compatibility tests.

In this paper we use the concept of session types [6] for describing the
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dynamic behavior of components. Sessions are partial protocol specifications,
in which we only pay attention to the behavioral interface that a component
presents to another one. This allows modular specification of the behavior of
the components, providing more than just signature information, and permits
precise definitions of compatibility and substitutability tests, and at a lower
computational cost than other semantic checks (and hence of practical utility).

Furthermore, session types are types, and therefore supported by a type
discipline. This is a key element of the structuring method that provides
typability checks between sessions, thus allowing powerful compatibility tests
between components. The typability of a program ensures that two possibly
communicating components always own compatible communication patterns.
Moreover, typability also permits the definition of component substitutability
checks based on the concept of session subtyping, which are computationally
tractable in most cases, in contrast to the exponential (non-tractable) tests
that result from the use of traces or process algebras in protocol descriptions.

Our work builds on the work by Honda et al. [6], which initially introduced
session types for describing object service protocols. Protocol compatibility
and substitutability tests are defined using the subtyping relation defined by
Gay and Hole for session types [5]. In this paper we first complement those
works by introducing the notion of compatibility between session types, extend
it to objects, prove some of its properties, and then study how session types
can be successfully applied not only at the theoretical level, but also in a
commercial environment such as the one that CORBA provides.

The structure of this paper is as follows. After this introduction, Section 2
introduces the language we propose for describing object protocol interac-
tions, using an example application that will be used throughout the paper
to illustrate our proposal. Section 3 introduces the type discipline supporting
the language, including a subtyping relation ‘≤’ for session types via a proof
system. This operator will also serve us to define the notion of compatibility
between components. The application of our theoretical results to the partic-
ular case of CORBA is presented in Section 4. Finally, Section 5 relates our
work to other similar approaches and draws some conclusions.

2 Expressing objects interactions via protocols

This section presents a language to describe protocols. The language is gen-
erated by the grammar in Figure 1.

We illustrate the usage of the language via an example. Consider a dis-
tributed auction system, with three kinds of players: sellers that want to sell
items, an auctioneer that sells items on their behalf, and bidders that bid for
an item being auctioned (Figure 2).

The protocol with a seller is simple: there is only one operation that sellers
may invoke on an auctioneer—selling—where they provide the bidder with a
description of the item to be sold (a string), and the minimum price they are
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Protocol ::= protocol X {Session+}
Session ::= session (X = T )+

T ::= &{m1 : T1 | · · · | mn : Tn} | +{m1 : T1 | · · · | mn : Tn} |
?(T̃ ); T | ![T̃ ]; T | ?(s̃ort); T | ![s̃ort]; T | X | end

sort ::= string | float | boolean

Fig. 1. A grammar for describing protocols

protocol Auctioneer {
session withASeller =

&{ selling: ?(string, float);

+{ sold: ![float]; end

| notSold; end

}
}

session withABidder =

&{ register: +{ wannaBid: ![string, float]; ?(boolean); Bidding} }
Bidding =

+{ wannaBid: ![string, float]; ?(boolean); Bidding

| itemSold: ![string]; Unregistering

| youGotIt: ![string, float]; Unregistering

}
Unregistering =

&{ unregister: end }
}

Fig. 2. Distributed auction bidding

willing to sell the item for (a float). This accounts for the &{ selling: ?(string,

float); part of the protocol. Sellers then wait on the outcome of their request.
Two things can happen: either the item was sold (in which case the seller
gets the price the item was sold for), or the item was not sold. The first
case is modelled by the invocation of operation sold on the seller; the second
by the operation of operation notSold. In either case the protocols halts, as
indicated by the end mark. The distinction between the inbound operation
&{selling: . . . }, and the outbound operation +{sold: . . . | notSold: . . . } must be
stressed: the former denotes an operation provided by the auctioneer and
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invoked by any seller, the latter describes an operation of a seller invoked by
an auctioneer.

The protocol with a bidder is slightly more complex. Bidders start by
registering themselves at the auctioneer, then enter an interactive bidding
session, and eventually unregister, thus leaving the protocol. Register is an
operation without arguments. Upon registering, the bidder gets a bidding
proposal containing a description of an item (a string) and a price (a float); to
which they answer “I am interested” or “I skip” (a boolean). This accounts
for the +{ wannaBid: ![string, float]; ?(boolean); part of the protocol. The
interactive session starts then: the bidder must be ready for three different
kinds of requests coming from the auctioneer: new wannaBid challenges (either
for the same item or for a distinct one), and two different acknowledgements.
The auctioneer request itemSold says that the given item is no longer for sale
(it may have been sold, or the price may have got below the minimum required
by the seller); request youGotIt comes with the item description and the final
price.

Notice that wannaBid operations brings the protocol back to the Bidding

loop, whereas the two acknowledgements takes the protocol to the unregister-
ing phase and then to halt. Session identifiers serve two purposes: recursive
definitions (Bidding), and code structuring (Unregistering).

Consider now the protocol for a potential seller: it must provide an auc-
tioneer with the description of the item to be sold (a string), and its minimum
price (a float). Then it waits for the outcome: sold or not notSold. Below is a
possible description.

protocol Seller {
session withAnAuctioneer =

+{ selling: ![string, float];

&{ sold: ?(float); end

| notSold; end

}
}
There is a close relationship between session Auctioneer::withASeller and ses-

sion Seller::withAnAuctioneer: where one says select (+) the other says branch
(&), where one says output (!) the other says input (?). In fact, the two ses-
sions are complementary or dual (the exact definition is in Section 3). Duality
is what guarantees that sessions do not go wrong : it precludes the standard
“message not understood” error (operation not provided, wrong number of
arguments, or wrong sort for an argument), and also problems derived from
misunderstandings of the next operation in a protocol (both partners output
at a given point; one partner ends the protocol whereas the other requests an
operation).
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As a last example consider a more apt seller, that upon emitting a selling
order, is able to process three kinds of requests: the familiar sold/notSold, as
well as the new lowerYourPrice, to which the seller may refuse or assent. In the
latter case the seller sends a new price, and the selling process restarts. Here
is a possible definition.

protocol SuperSeller {
session withAnAuctioneer = +{ selling: ![string, float]; Selling }

Selling =

&{ sold: ?(float); end

| notSold: end

| lowerYourPrice:

+{ ok: ![float]; Selling | noWay: end}
}

}
Can a SuperSeller try to sell an item to an Auctioneer? The SuperSeller

has more behavior than the Seller: he can conduct all the sessions a Seller

conducts (basically, selling-sold and selling-notSold), but also more sophisticated
sessions (such as selling-lowerYourPrice-ok-lowerYourPrice-ok-sold). Essentially, Su-

perSeller::withAnAuctioneer has less-or-equal selections (+), and more-or-equal
branchings (&); session SuperSeller::withAnAuctioneer is a supertype of session
Seller::withAnAuctioneer: we write Seller::withAnAuctioneer ≤ SuperSeller::withAn-

Auctioneer (the exact definition is in Section 3).

What makes session SuperSeller::withAnAuctioneer compatible with session
Auctioneer::withASeller? The fact that the former is a supertype of a type
(Seller::withAnAuctioneer) that is dual to the latter. In this case we write Su-

perSeller::withAnAuctioneer ./ Auctioneer::withASeller. Finally we may say that
protocol SuperSeller is compatible with protocol Auctioneer since there is a ses-
sion in the former (withAnAuctioneer) that is compatible with a session in the
latter (withASeller). SuperSeller is compatible with Auctioneer, only that part of
its programmed behavior never gets excited by the basic Auctioneer.

3 A type discipline for sessions

This section presents the subtyping relation for session types via a proof sys-
tem. As usual, T is a subtype of S, written T ≤ S, if T can be used in
any context where S is used and no error occurs in the session. Therefore,
T should have more-or-equal branchings (+) and less-or-equal selections (&).
Based on this relation we say that T is compatible with S, T ./ S, if T is a
subtype of a dual of S.

6



Vallecillo, Vasconcelos and Ravara

T dualof S ∈ Σ

Σ ` T dualof S
(D-assump)

Σ ` end dualof end (D-end)

T dualof S

Σ ` ?(s̃ort); T dualof ![s̃ort]; S
(D-sort-in)

T dualof S

Σ ` ![s̃ort]; T dualof ?(s̃ort); S
(D-sort-out)

T T̃ dualof SS̃

Σ ` ?(T̃ ); T dualof ![S̃]; S
(D-type-in)

T T̃ dualof SS̃

Σ ` ![T̃ ]; T dualof ?(S̃); S
(D-type-out)

Σ ` Ti dualof Si ∀i ∈ {1, . . . , n}
Σ ` &{m1 : T1 | · · · | mn : Tn} dualof +{m1 : S1 | · · · | mn : Sn} (D-branch)

Σ ` Ti dualof Si ∀i ∈ {1, . . . , n}
Σ ` +{m1 : T1 | · · · | mn : Tn} dualof &{m1 : S1 | · · · | mn : Sn} (D-select)

Σ, µX.T dualof S ` unwind(µX.T ) dualof S

Σ ` µX.T dualof S
(D-rec-L)

Σ, S dualof µX.T ` S dualof unwind(µX.T )

Σ ` S dualof µX.T
(D-rec-R)

Fig. 3. Duality system

3.1 Recursive session types

For technical convenience, the language of types used in this section uses
recursive definitions rather than equations. The grammar for types T in Fig-
ure 1 is enriched with a new production µX.T . If D is the set of equations
{X0 = T0, . . . , Xn = Tn} taken from a given protocol, and I is the index set
{0, . . . , n}, then each type Tk (for 1 ≤ k ≤ n) is translated into a recursive
type accordingly to the following rule.

[[Tk, D]]
def
= Tk[µXi.(Ti[µXj.Tj/Tj]j∈I\{i})/Xi]i∈I

3.2 Type duality

In Section 2 we have hinted that sessions Auctioneer::withASeller and Seller::

withAnAuctioneer are dual because where one says select (+) the other says
branch (&), where one says output (!) the other says input (?). The actual
definition is slightly complicated by the presence of recursive types. The in-
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ference rules are of the form Σ ` T dualof S where Σ is finite set of pairs of the
form T dualof S, meaning that type T is a dual of type S, assuming the pairs
in Σ. The rules in Figure 3 inductively define a proof system for type duality,
and allow to show, for example, that:

` µX.?(boolean); X dualof ![boolean]; µY.![boolean]; Y

The example shows that the dual of a type is not unique; the “straightfor-
ward” dual µX.![boolean]; X of the type µX.?(boolean); X is another example.

3.3 Subtyping

Gay and Hole formally defined a subtyping relation for session types by means
of a collection of inference rules for judgements of the form Σ ` T ≤ S, where
Σ is finite set of inequalities T ≤ S, meaning that type T is a supertype of
type S, assuming the inequalities in Σ [5]. When ∅ ` T ≤ S is derivable, we
will simply write T ≤ S. Using this operator, in our context the expression
‘T ≤ S’ will (indistinctly) mean: “T is more restrictive than S”; “S is more
general than T”; “T can (safely) replace S”; “S is substitutable by T”; or “T
is a subtype of S”.

The subset of the rules proposed by Gay and Hole that we need for subtyp-

ing session types is in Figure 4, where unwind(µX.T )
def
= T [µX.T/X]. These

rules inductively define a proof system for subtyping. Based on this rela-
tion, we are finally in a position to define the concepts of substitutability and
compatibility between session types.

Definition 3.1 Let T and S be session types. We say that:

(i) T can safely substitute S, if T ≤ S;

(ii) T is compatible with S, and write T ./ S, if T ≤ U , for some U dualof S.

3.4 Example

Let us show that session S
def
= Seller::withAnAuctioneer can safely substitute

session T
def
= SuperSeller::withAnAuctioneer and that session T is compatible with

session U
def
= Auctioneer::withASeller.

(i) Recall that

S
def= +{ selling: ![string, float]; S′ }

where

S′ def= &{ sold: ?(float); end | notSold: end } ,

and that

T
def= +{ selling: ![string, float]; T ′ }

where

T ′ def= µX.&{ sold: ?(float); end | notSold: end | lowerYourPrice: T ′′ }
with
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T ≤ S ∈ Σ

Σ ` T ≤ S
(S-assump)

Σ ` end ≤ end (S-end)

Σ ` T ≤ S

Σ ` ?(s̃ort); T ≤ ?(s̃ort); S
(S-sort-in)

Σ ` T ≤ S

Σ ` ![s̃ort]; T ≤ ![s̃ort]; S
(S-sort-out)

Σ ` T ≤ S Σ ` Ti ≤ Si ∀i ∈ {1, . . . , n}
Σ ` ?(T̃ ); T ≤ ?(S̃); S

(S-type-in)

Σ ` T ≤ S Σ ` Si ≤ Ti ∀i ∈ {1, . . . , n}
Σ ` ![T̃ ]; T ≤ ![S̃]; S

(S-type-out)

n ≤ m Σ ` Ti ≤ Si ∀i ∈ {1, . . . , n}
Σ ` &{m1 : T1 | · · · | mn : Tn} ≤ &{m1 : S1 | · · · | mm : Sm} (S-branch)

n ≤ m Σ ` Ti ≤ Si ∀i ∈ {1, . . . , n}
Σ ` +{m1 : T1 | · · · | mm : Tm} ≤ +{m1 : S1 | · · · | mn : Sn} (S-select)

Σ, µX.T ≤ S ` unwind(µX.T ) ≤ S

Σ ` µX.T ≤ S
(S-rec-L)

Σ, S ≤ µX.T ` S ≤ unwind(µX.T )

Σ ` S ≤ µX.T
(S-rec-R)

Fig. 4. Subtyping system

T ′′ def= +{ ok: ![float]; X | noWay: end }.
To show that S ≤ T , apply first the rule S-branch to conclude S ′ ≤

unwind(T ′), then the rule S-rec-R to conclude S ′ ≤ T ′, and finally the
rule S-select.

(ii) Recall that

U
def= &{ selling: ?(string, float); U ′ }

where

U ′ def= +{ sold: ![float]; end | notSold: end }.
To show that U ./ T one must find V such that V dualof U and V ≤ T .

It is simple to check that session S is the V that one needs: using rules
D-type-in and D-branch one concludes that S ′ dualof U ′; by rules D-
type-out and D-select one reaches the desired conclusion. The result
follows by proving that S ≤ T , what we have already done in the previous
item.
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3.5 Results

The following results show that substitutability is well defined, in the sense
that subtyping is a preorder, and stress some properties of the duality and the
compatibility relations. Note that compatibility is a symmetric relation, but
is neither reflexive nor transitive, since duality is obviously not reflexive, but
being symmetric is thus not transitive. The most interesting result is that if
a session S is a subtype of some session T , then a dual of T is a subtype of a
dual of S.

Proposition 3.2

(i) The relation dualof is symmetric.

(ii) Subtyping ≤ is a preorder.

(iii) S ≤ T if and only if V ≤ U , for all U dualof S and all V dualof T .

(iv) Compatibility ./ is symmetric.

(v) If U ≤ T and T ./ S, then U ./ S.

Proof. The proof of the first clause is by a simple induction on the derivation
of the judgement S dualof T . The proof of the second clause is a straightfor-
ward consequence of the definition of ≤. To prove the third clause it suffices
to show the ‘only-if’ direction; then the ‘if’ direction follows from clause one.
For the ‘only-if’ direction, proceed by induction on the derivation of the judge-
ment V ≤ U . The fourth clause is a direct consequence of clause iii and of the
definition of ‘./’. Finally, the fifth clause is a consequence of the transitivity
of ≤. 2

3.6 Checking components

Given the relations of substitutability and compatibility of sessions, it is easy
to check whether two components are substitutable (or compatible): one sim-
ply has to check that each session in the protocol of one of the components
is substitutable for (or compatible with) some session in the protocol of the
other component. To talk about which session relates to which session within
two given protocols, we introduce the notion set of bindings, a set of pairs of
session identifiers.

Definition 3.3 Let {X1 = T1, . . . , Xn = Tn} and {Y1 = T1, . . . , Ym = Tm}
be two sets D and D′ of equations extracted from two given protocols P and
Q, and let {(X1, Y1), . . . , (Xk, Yk)} be a set B of bindings, where k ≤ n and
k ≤ m. We say that the two protocols P and Q are:

(i) substitutable over the set B of bindings, if [[Ti, D]] ≤ [[T ′
i , D

′]] for all 1 ≤
i ≤ k;

(ii) compatible over the set B of bindings, if [[Ti, D]] ./ [[T ′
i , D

′]], for all 1 ≤
i ≤ k.
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It is now easy to conclude that SuperSeller can safely substitute Seller,
and that SuperSeller is compatible with Auctioneer; just take for B the set
{(withAnAuctioneer, withASeller)} in both cases.

4 A case study

In this section we study how session types can be successfully applied not only
at the theoretical level, but also in a commercial environment such as the one
that CORBA provides.

CORBA is one of the major distributed object platforms. Proposed by the
OMG (www.omg.org), the Object Management Architecture (OMA) attempts
to define, at a high level of description, the various facilities required for
distributed object-oriented computing. The core of the OMA is the Object
Request Broker (ORB), a mechanism that provides transparency of object
location, activation and communication. The Common Object Request Broker
Architecture (CORBA) specification describes the interfaces and services that
must be provided by compliant ORBs [11].

In the OMA model, objects provide services, and clients issue requests for
those services to be performed on their behalf. The purpose of the ORB is to
deliver requests to objects and return any output values back to clients, in a
transparent way to the client and the server. Clients need to know the object
reference of the server object. ORBs use object references to identify and
locate objects to redirect requests to them. As long as the referenced object
exists, the ORB allows the holder of an object reference to request services
from it.

Even though an object reference identifies a particular object, it does not
necessarily describe anything about the object’s interface. Before an applica-
tion can make use of an object, it must know what services the object provides.
CORBA defines an IDL to describe object interfaces, a textual language with
a syntax resembling that of C++. The CORBA IDL provides basic data types
(such as short, long, float, ...), constructed types (struct, union) and template
types (sequence, string). These are used to describe the interface of objects,
defined by set of types, attributes and the signature (parameters, return types
and exceptions raised) of the object methods, grouped into interface defini-
tions. Finally, the construct module is used to hold type definitions, interfaces,
and other modules for name scoping purposes. As an example, let us describe
a simple CORBA object given by the following interface:

interface Bidder {
boolean wannaBid (in string itemDesc, in float price);

void youGotIt (in string itemDesc, in float price);

void itemSold (in string itemDesc);

}
11
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It corresponds to the Bidder object described in Section 2. As we can
see, the CORBA IDL allows us to describe the signature of the operations
implemented by an object, but it does not allow the description of the external
operations required by that object, or the partial order (i.e. the protocol) in
which both the provided and used operations are expected to be invoked.

4.1 Expressing CORBA objects interactions

We now concentrate on how to add protocol information to the description
of the CORBA object interfaces, using the language constructs defined in
Section 2.

CORBA objects’ protocols are defined by two sets of interfaces and a set
of session types. The first set describes the set of provided CORBA interfaces
that the component supports (i.e. implements), each one under a provides

heading. Second, we have the set of external interfaces that the component
requires from other objects when implementing its supported services, ex-
pressed by uses headings (there may be none in case the object does not
require any external services). Finally, we find the specification of each role
the component plays in its interactions with other components, expressed in
terms of a set of session types, each of them indicated by a session clause.
The first two sets contain information at the signature level only, while the
last one is in charge of specifying the dynamic aspects of the behavior of the
object. The grammar for describing CORBA protocols is obtained from that
in Figure 1 by replacing the first production by the one below

Protocol ::= protocol X {(provides X)+ (uses X)∗ Session+}

The main modelling techniques that we propose for describing CORBA
object interactions are the following.

(i) In the CORBA IDL, methods have a return value and three kind of
arguments: in, out and inout. In a method invocation all in and inout

arguments are sent in the ![...] output action, written in the same order
they were declared in the IDL. In the method response (i.e. the ?(...)

input action) the first sort is the sort of the return value, followed by
the sorts of the inout and out arguments, in the same order they were
declared. Likewise for method acceptance and reply.

(ii) Methods with no arguments are considered as if having one argument of
sort void, to be added to those in Figure 1.

(iii) Special label quit is used in reactive servers to indicate the moments in
which a client may disconnect from the session.

(iv) Invocation of method “s m(s1,...,sk)” is modelled inside a select (+{...})
structure as “m:![s1,...,sk];?(s);”.

(v) Analogously, acceptance (and reply) of method “s m(s1,...,sk)” is modelled
by “m:?(s1,...,sk);![s];” inside a branch (&{...}) structure.

12



Vallecillo, Vasconcelos and Ravara

protocol Bidder {
provides Bidder

uses Auctioneer

session withAnAuctioneer =

+{ register: ![Bidder]; ?(string);

&{ wannaBid: ?(string, float); ![boolean]; Bidding}
}

Bidding =

&{ wannaBid: ?(string, float); ![boolean]; Bidding

| itemSold: ?(string); ![void]; Unregistering

| youGotIt: ?(string, float); ![void]; Unregistering

}
Unregistering =

+{ unregister: ![string]; ?(void); end}
}

Fig. 5. The CORBA Bidder object protocol.

(vi) In case of methods that may raise exceptions, the return mechanism is
different. Normal termination is modelled by a special label success,
followed by an output action with the sort of the return argument. Ex-
ception raising is modelled by selecting a label with the name of the
exception, followed by the output of the sort of the parameters that the
exception returns. If a method may raise several exceptions, one label is
used for each of them.

With this, the protocol that defines the dynamic behavior of object Bidder

is shown in Figure 5, where objects Bidder make use of the services provided
by an Auctioneer object, whose interface is the following:

interface Auctioneer {
void selling (in string itemDesc, in float minPrice);

string register (in Bidder b); // returns a bidder ”id”

void unregister (in string id);

}
It is important to note that session types describing CORBA interactions

follow a reduced set of standard communication patterns, which are given by
a subset of the full grammar described in Figure 1. This is due to the fact
that CORBA imposes some restrictions on the communication patterns used
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by its objects, since client-server method invocation is the only mechanism
allowed. Thus, a server may just offer several of its methods within a branch
structure, then accept its input parameters, output the results, and become
either a client or a server again. But it can never start alternating inputs
and outputs in an arbitrary manner. And likewise for the client. This fact
facilitates both the description of the CORBA object protocols, and the way
to reason about their interactions.

Another issue worth noticing is the need to accommodate to the CORBA
specific way of working when describing CORBA object protocols with the
constructs defined in Section 2. For instance, comparing the protocols in
Figures 2 and 5 we can see that CORBA methods return a value (therefore
the ![void] not present in Figure 2), and that all arguments appearing in the
CORBA IDL interfaces must be present in the protocol description (eg. the
Bidder parameter of method register). Although not needed in generic proto-
cols, they are necessary when describing the behavior of the CORBA objects
implementing a particular CORBA interface.

5 Further issues and related work

The work we describe in this paper is still preliminary. This section discusses
several issues that need to be further investigated, and compare our approach
to other related proposals.

5.1 Testing compatibility

The notions substitutability and compatibility are based those of subtyping
and duality. The two notions are decidable; there are algorithms for checking
whether T ≤ S and whether T dualof S. A simple algorithm to check sub-
typing is presented by Gay and Hole [5]; from that one can easily imagine
one for checking duality. To check the compatibility of types T, S, we build
a “straightforward” dual S of S (see the definition in Honda et al. [6] or in
Gay and Hole), and then check the subtype relation T ≤ S. Notice that our
proof system for duality (Section 3) is correct with respect to “straightforward
duals”. We plan to study the computational complexity of these algorithms,
although we expect it to be tractable.

5.2 Static type conformance

We would like to be able to statically check that a given protocol implemen-
tation conforms to a given protocol interface that supposedly describes its
behaviour. While that is certainly easy to do with message-passing-based lan-
guages (π-based languages, for example [5,6]), the scenario is not so bright
when it comes to languages whose communication mechanism is not based on
message-passing. Transferring session types from the π-calculus to an imper-
ative or object-oriented language is a open and challenging problem.
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5.3 Dynamic type conformance

While we do not know how to statically check type conformance, or when
we do not have access to the source code, we can dynamically check type
conformance, that is, check that an actual protocol implementation does con-
form to a given type, during execution. The idea is to set up an interceptor
that monitors all incoming and outgoing messages to and from an object. It
should be easy to build an interceptor for a particular session type as an au-
tomata whose arcs are labelled with the constructors of types T in Figure 1
(&m; +m, ![T̃ ], ?(T̃ ), ![s̃ort], and ?(s̃ort)).

CORBA in particular provides this kind of entities, by means of interceptor
objects [11], which are local objects that can be attached to any CORBA
object, acting as filters that intercept and observe all the object’s incoming
and outgoing messages. Thus, they allow a programmer to specify additional
code to be executed before or after the normal code of an operation. This code
can be used for observing the messages exchanged among the components
of an application, checking whether they conform to a valid predetermined
behaviour. Therefore, an interceptor can be defined for each object, and
attached to it when created. Invalid messages with regard to a given protocol
can be captured and handled as required.

5.4 Programming protocols in imperative languages

Close to the problem of static type conformance above lies that of program-
ming protocols in imperative (in particular concurrent object-oriented) lan-
guages. One could create a different object for each step of a protocol, and
send on, each method invocation, a reference for the object that continues the
protocol. Output following a selection (+{ sold: ![float]. . . ), a quite common
pattern, is implemented as a method call and its arguments; input following
branching (&{ selling: ?(string, float). . . ) is implemented as method decla-
ration and its parameters. For example protocol Seller in Section 2 could
written in Java as “anAuctioneer.selling (”my car”, 1500.0, new SoldNotSold ())”,
where SoldNotSold is a class with two methods (sold, notSold), whose instances
implement the continuation of the protocol. As already mentioned in [6],
the resulting program is hard to understand, and feels unnatural. However,
the code may be simpler and clearer adopting a “behaviour-oriented” style
of programming like in non-uniform objects—objects that may dynamically
change their behaviour and even the methods they offer—as advocated by
Nierstrasz [10] and studied by Ravara [12].

5.5 Related work

As mentioned in the introduction, several authors have provided a number of
proposals that try to overcome the limitations that current component IDLs
present, defining extensions that cope with the semantic aspects of object
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interfaces and behavior. Apart from those that try to deal with the full oper-
ational semantics of components (discussed in [8]), there are several proposals
that cover the specification of the objects’ service protocols using different
notations—from finite state machines to process algebras [1,3,7,10,13]. How-
ever, all these proposals share some limitations. First, they do not allow the
modular description of the protocols. Second, the compatibility and substi-
tutability tests that they provide either are not decidable or do not have a
tractable computational complexity. Finally, none of them are directly sup-
ported by a type discipline. Our proposal helps solve these problems, at the
cost of sacrificing some expressiveness—just pairwise object interactions can
be expressed in terms of session types, not full-blown interaction protocols.

An interesting proposal by Braciali et al. [2] also sacrifices expressiveness
in order to achieve modularity and computational tractability when describ-
ing and reasoning about component interactions. The authors use a sugared
subset π-calculus for describing interaction patterns—sets of interactions that
describe the finite interactive behaviour that a component may (repeatedly)
show to the external environment. In their approach, interaction patterns do
not contain recursion, hence projecting the full-blown behavior of a compo-
nent over ‘time’, instead of over ‘space’ as we do in our work. Projecting over
space is also the approach used by Canal et al. [4], that use roles for defining
partial protocol specifications. Although roles may alleviate some of the com-
putational complexity of the substitutability tests, they are still NP-hard. In
this sense our more lightweight approach represents an improvement, despite
of losing some expressiveness (sessions, unlike roles, can only describe pairwise
interactions).

Finally, some Architectural Description Languages (ADLs) also include
the descriptions of the protocols that determine the access to the components
they define using standard notations that derive from process algebras (like
CSP, CCS or π-calculus). One of the benefits of using standard calculi is that
reasoning about system behavior and correctness can be done using appropri-
ate tools. Darwin [9] and LEDA [4] are examples of ADLs that make use of
the π-calculus for describing the behavior of the components of a system. Our
focus is somehow different, since we are more concerned with the specification
of software components, independently from the applications they will be part
of. However, what we have shown here is that we can achieve the same sort
of tests that software architects carry out with their ALDs, right from the
objects’ protocol specifications.
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